These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 28093952)

  • 21. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.
    Wang XQ; Zhang Q
    Eur J Pharm Biopharm; 2012 Oct; 82(2):219-29. PubMed ID: 22885229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug dissolution: significance of physicochemical properties and physiological conditions.
    Jambhekar SS; Breen PJ
    Drug Discov Today; 2013 Dec; 18(23-24):1173-84. PubMed ID: 24042023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oral delivery of proteins by biodegradable nanoparticles.
    Bakhru SH; Furtado S; Morello AP; Mathiowitz E
    Adv Drug Deliv Rev; 2013 Jun; 65(6):811-21. PubMed ID: 23608641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer-based oral peptide nanomedicines.
    Herrero EP; Alonso MJ; Csaba N
    Ther Deliv; 2012 May; 3(5):657-68. PubMed ID: 22834409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway.
    Wang D; Jiang Q; Dong Z; Meng T; Hu F; Wang J; Yuan H
    Adv Drug Deliv Rev; 2023 Dec; 203():115130. PubMed ID: 37913890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery.
    Hallan SS; Kaur P; Kaur V; Mishra N; Vaidya B
    Artif Cells Nanomed Biotechnol; 2016; 44(1):334-49. PubMed ID: 25237838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymeric Biomaterial and Lipid Based Nanoparticles for Oral Drug Delivery.
    Dilnawaz F
    Curr Med Chem; 2017; 24(22):2423-2438. PubMed ID: 27804879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BCS class IV drugs: Highly notorious candidates for formulation development.
    Ghadi R; Dand N
    J Control Release; 2017 Feb; 248():71-95. PubMed ID: 28088572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.
    He W; Yang K; Fan L; Lv Y; Jin Z; Zhu S; Qin C; Wang Y; Yin L
    Int J Pharm; 2015 Nov; 495(1):9-18. PubMed ID: 26325310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation.
    Nooli M; Chella N; Kulhari H; Shastri NR; Sistla R
    Drug Dev Ind Pharm; 2017 Apr; 43(4):611-617. PubMed ID: 28005442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymeric particulates to improve oral bioavailability of peptide drugs.
    Delie F; Blanco-Príeto MJ
    Molecules; 2005 Jan; 10(1):65-80. PubMed ID: 18007277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered nanoparticulate drug delivery systems: the next frontier for oral administration?
    Diab R; Jaafar-Maalej C; Fessi H; Maincent P
    AAPS J; 2012 Dec; 14(4):688-702. PubMed ID: 22767270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of drug molecular weight on self-assembly and intestinal permeation of polymer-based nanocarriers.
    Schreiner J; Rindt C; Wächter J; Jung N; Vogel-Kindgen S; Windbergs M
    Int J Pharm; 2023 Nov; 646():123483. PubMed ID: 37802258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs.
    Managuli RS; Raut SY; Reddy MS; Mutalik S
    Expert Opin Drug Deliv; 2018 Aug; 15(8):787-804. PubMed ID: 30025212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanonization techniques to overcome poor water-solubility with drugs.
    Da Silva FLO; Marques MBF; Kato KC; Carneiro G
    Expert Opin Drug Discov; 2020 Jul; 15(7):853-864. PubMed ID: 32290727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles.
    Sánchez-López E; Espina M; Doktorovova S; Souto EB; García ML
    Eur J Pharm Biopharm; 2017 Jan; 110():58-69. PubMed ID: 27789359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: peroral and mucosal routes.
    Silva AC; Santos D; Ferreira D; Lopes CM
    Curr Med Chem; 2012; 19(26):4495-510. PubMed ID: 22834821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery.
    Roger E; Lagarce F; Garcion E; Benoit JP
    Nanomedicine (Lond); 2010 Feb; 5(2):287-306. PubMed ID: 20148639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Systematic Review of Functionalized Polymeric Nanoparticles to Improve Intestinal Permeability of Drugs and Biological Products.
    de Souza ML; de Albuquerque Wanderley Sales V; Alves LP; Dos Santos WM; de Moura Ferraz LR; de Andrade Lima GS; Dos Santos Mendes LM; Rolim LA; Neto PJR
    Curr Pharm Des; 2022; 28(5):410-426. PubMed ID: 34348618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.