BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28094241)

  • 1. Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure.
    Zhang L; Le Coz-Botrel R; Beddoes C; Sjöström T; Su B
    Biomed Mater; 2017 Jan; 12(1):015014. PubMed ID: 28094241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting.
    Yan L; Wu J; Zhang L; Liu X; Zhou K; Su B
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():335-340. PubMed ID: 28415469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions.
    Wieding J; Fritsche A; Heinl P; Körner C; Cornelsen M; Seitz H; Mittelmeier W; Bader R
    J Appl Biomater Funct Mater; 2013 Dec; 11(3):e159-66. PubMed ID: 23599179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-porous titanium oxide scaffold with high compressive strength.
    Tiainen H; Lyngstadaas SP; Ellingsen JE; Haugen HJ
    J Mater Sci Mater Med; 2010 Oct; 21(10):2783-92. PubMed ID: 20711636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications.
    Aslan N; Aksakal B; Findik F
    J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.
    Li F; Li J; Xu G; Liu G; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamellar structure/processing relationships and compressive properties of porous Ti6Al4V alloys fabricated by freeze casting.
    Li F; Xue X; Jia T; Dang W; Zhao K; Tang Y
    J Mech Behav Biomed Mater; 2020 Jan; 101():103424. PubMed ID: 31514056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of freezing conditions on β-Tricalcium Phosphate /Camphene scaffold with micro sized particles fabricated by freeze casting.
    Singh G; Soundarapandian S
    J Mech Behav Biomed Mater; 2018 Mar; 79():189-194. PubMed ID: 29306082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and evaluation of a biomimetic scaffold with porosity gradients in vitro.
    Wang Q; Wang Q; Wan C
    An Acad Bras Cienc; 2012 Mar; 84(1):9-16. PubMed ID: 22441592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell growth on pore-graded biomimetic TiO2 bone scaffolds.
    Müller B; Reseland JE; Haugen HJ; Tiainen H
    J Biomater Appl; 2015 Apr; 29(9):1284-95. PubMed ID: 25394623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model.
    Peng W; Xu L; You J; Fang L; Zhang Q
    Biomed Eng Online; 2016 Jul; 15(1):85. PubMed ID: 27439427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design.
    Arora A; Kothari A; Katti DS
    J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic freeze casting for the production of porous titanium (Ti) scaffolds.
    Jung HD; Yook SW; Jang TS; Li Y; Kim HE; Koh YH
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):59-63. PubMed ID: 25428042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and mechanical characterization of porous titanium bone substitutes.
    Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G
    J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.