These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28094365)

  • 1. Adsorbing the 3d-transition metal atoms to effectively modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons.
    Li H; Chen W; Shen X; Liu J; Huang X; Yu G
    Phys Chem Chem Phys; 2017 Feb; 19(5):3694-3705. PubMed ID: 28094365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorbing a PVDF polymer via noncovalent interactions to effectively tune the electronic and magnetic properties of zigzag SiC nanoribbons.
    Li H; Chen W; Sun Y; Huang X; Yu G
    Phys Chem Chem Phys; 2015 Oct; 17(37):24038-47. PubMed ID: 26312553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular charge transfer by adsorbing TCNQ/TTF molecules via π-π interaction: a simple and effective strategy to modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons.
    Liu D; Yu G; Sun Y; Huang X; Guan J; Zhang H; Li H; Chen W
    Phys Chem Chem Phys; 2015 Jan; 17(2):941-50. PubMed ID: 25407886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The donor/acceptor edge-modification: an effective strategy to modulate the electronic and magnetic behaviors of zigzag silicon carbon nanoribbons.
    Ding X; Yu G; Huang X; Chen W
    Phys Chem Chem Phys; 2013 Nov; 15(41):18039-47. PubMed ID: 24060960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorbing the magnetic superhalogen MnCl
    Li H; Yu G; Zhang Z; Ma Y; Huang X; Chen W
    RSC Adv; 2018 Apr; 8(24):13167-13177. PubMed ID: 35542555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realizing diverse electronic and magnetic properties in hybrid zigzag BNC nanoribbons via hydrogenation.
    Sun Y; Yu G; Liu J; Shen X; Huang X; Chen W
    Phys Chem Chem Phys; 2016 Jan; 18(2):1326-40. PubMed ID: 26658552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of the formation of Stone-Wales defects on the electronic and magnetic properties of silicon carbide nanoribbons: a first-principles investigation.
    Guan J; Yu G; Ding X; Chen W; Shi Z; Huang X; Sun C
    Chemphyschem; 2013 Aug; 14(12):2841-52. PubMed ID: 23794368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of electronic and magnetic properties of edge hydrogenated armchair phosphorene nanoribbons by transition metal adsorption.
    Rao YC; Zhang P; Li SF; Duan XM; Wei SH
    Phys Chem Chem Phys; 2018 May; 20(18):12916-12922. PubMed ID: 29701208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, Magnetic and Electronic Properties of 3d Transition-Metal Atoms Adsorbed Monolayer BC
    Chen F; Fan L; Hou X; Li C; Chen ZQ
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor.
    Zhang X; Sun Y; Ma L; Zhao X; Yao X
    Nanotechnology; 2018 Jul; 29(30):305706. PubMed ID: 29738311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of transition-metal atoms on boron nitride nanotube: a density-functional study.
    Wu X; Zeng XC
    J Chem Phys; 2006 Jul; 125(4):44711. PubMed ID: 16942178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structures of SiC nanoribbons.
    Sun L; Li Y; Li Z; Li Q; Zhou Z; Chen Z; Yang J; Hou JG
    J Chem Phys; 2008 Nov; 129(17):174114. PubMed ID: 19045340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photogalvanic effect induced fully spin polarized current and pure spin current in zigzag SiC nanoribbons.
    Chen J; Zhang L; Zhang L; Zheng X; Xiao L; Jia S; Wang J
    Phys Chem Chem Phys; 2018 Nov; 20(41):26744-26751. PubMed ID: 30324951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half-metallic properties of 3d transition metal atom-intercalated graphene@MS
    Zhang X; Bao Z; Ye X; Xu W; Wang Q; Liu Y
    Nanoscale; 2017 Aug; 9(31):11231-11238. PubMed ID: 28752887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and magneto-electronic properties and electric field-mediated effects for transition metal-terminated zigzag h-BN nanoribbons.
    Liu J; Zhang ZH; Yuan PF; Fan ZQ
    Phys Chem Chem Phys; 2017 Feb; 19(6):4469-4477. PubMed ID: 28120954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-metallic antiferromagnets induced by non-magnetic adatoms on bilayer silicene.
    Ouyang XF; Zhang YZ; Wang L; Liu DS
    RSC Adv; 2023 Jan; 13(4):2404-2410. PubMed ID: 36741172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties.
    Guan Z; Si C; Hu S; Duan W
    Phys Chem Chem Phys; 2016 Apr; 18(17):12350-6. PubMed ID: 27087060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust half-metallicity in transition metal tribromide nanowires.
    Li SS; Wang YP; Hu SJ; Chen D; Zhang CW; Yan SS
    Nanoscale; 2018 Aug; 10(33):15545-15552. PubMed ID: 30087972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.