These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28094392)

  • 1. 3D printing of self-assembling thermoresponsive nanoemulsions into hierarchical mesostructured hydrogels.
    Hsiao LC; Badruddoza AZ; Cheng LC; Doyle PS
    Soft Matter; 2017 Feb; 13(5):921-929. PubMed ID: 28094392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups.
    Joas S; Tovar GEM; Celik O; Bonten C; Southan A
    Gels; 2018 Aug; 4(3):. PubMed ID: 30674845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform.
    Imani KBC; Jo A; Choi GM; Kim B; Chung JW; Lee HS; Yoon J
    Macromol Rapid Commun; 2022 Jan; 43(2):e2100579. PubMed ID: 34708464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanin Nanoparticle-Incorporated Silk Fibroin Hydrogels for the Enhancement of Printing Resolution in 3D-Projection Stereolithography of Poly(ethylene glycol)-Tetraacrylate Bio-ink.
    Shin S; Kwak H; Hyun J
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23573-23582. PubMed ID: 29939712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
    Ouyang L; Highley CB; Rodell CB; Sun W; Burdick JA
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1743-1751. PubMed ID: 33440472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignin-Based Direct Ink Printed Structural Scaffolds.
    Jiang B; Yao Y; Liang Z; Gao J; Chen G; Xia Q; Mi R; Jiao M; Wang X; Hu L
    Small; 2020 Aug; 16(31):e1907212. PubMed ID: 32597027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions.
    Shahbazi M; Jäger H; Ahmadi SJ; Lacroix M
    Carbohydr Polym; 2020 Jul; 240():116211. PubMed ID: 32475544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pickering emulgels reinforced with host-guest supramolecular inclusion complexes for high fidelity direct ink writing.
    Pang B; Ajdary R; Antonietti M; Rojas O; Filonenko S
    Mater Horiz; 2022 Feb; 9(2):835-840. PubMed ID: 34985072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing.
    Zhang B; Li S; Hingorani H; Serjouei A; Larush L; Pawar AA; Goh WH; Sakhaei AH; Hashimoto M; Kowsari K; Magdassi S; Ge Q
    J Mater Chem B; 2018 May; 6(20):3246-3253. PubMed ID: 32254382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of concentrated emulsions into multiphase biocompatible soft materials.
    Sommer MR; Alison L; Minas C; Tervoort E; Rühs PA; Studart AR
    Soft Matter; 2017 Mar; 13(9):1794-1803. PubMed ID: 28165099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers.
    Bone JM; Childs CM; Menon A; Póczos B; Feinberg AW; LeDuc PR; Washburn NR
    ACS Biomater Sci Eng; 2020 Dec; 6(12):7021-7031. PubMed ID: 33320614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poloxamer/Poly(ethylene glycol) Self-Healing Hydrogel for High-Precision Freeform Reversible Embedding of Suspended Hydrogel.
    Colly A; Marquette C; Courtial EJ
    Langmuir; 2021 Apr; 37(14):4154-4162. PubMed ID: 33787263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels.
    Basu A; Saha A; Goodman C; Shafranek RT; Nelson A
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40898-40904. PubMed ID: 29091399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gum Arabic-based three-dimensional printed hydrogel for customizable sensors.
    Wang T; Yu Z; Si J; Liu L; Ren X; Gao G
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):128072. PubMed ID: 37967603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.
    Shin S; Hyun J
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26438-26446. PubMed ID: 28737375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdroplet Interactions and Rheology of Concentrated Nanoemulsions for Templating Porous Polymers.
    Abbasian Chaleshtari Z; Salimi-Kenari H; Foudazi R
    Langmuir; 2021 Jan; 37(1):76-89. PubMed ID: 33337881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive Manufacturing of Catalytically Active Living Materials.
    Saha A; Johnston TG; Shafranek RT; Goodman CJ; Zalatan JG; Storti DW; Ganter MA; Nelson A
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13373-13380. PubMed ID: 29608267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct-Ink Write 3D Printing Multistimuli-Responsive Hydrogels and Post-Functionalization Via Disulfide Exchange.
    Fellin CR; Nelson A
    ACS Appl Polym Mater; 2022 May; 4(5):3054-3061. PubMed ID: 38239328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.