These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28094503)

  • 1. Controlled Doping in Graphene Monolayers by Trapping Organic Molecules at the Graphene-Substrate Interface.
    Srivastava PK; Yadav P; Rani V; Ghosh S
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5375-5381. PubMed ID: 28094503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gate-Tunable Dirac Point of Molecular Doped Graphene.
    Solís-Fernández P; Okada S; Sato T; Tsuji M; Ago H
    ACS Nano; 2016 Feb; 10(2):2930-9. PubMed ID: 26812353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical adsorption and charge transfer of molecular Br2 on graphene.
    Chen Z; Darancet P; Wang L; Crowther AC; Gao Y; Dean CR; Taniguchi T; Watanabe K; Hone J; Marianetti CA; Brus LE
    ACS Nano; 2014 Mar; 8(3):2943-50. PubMed ID: 24528378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet-light-driven doping modulation in chemical vapor deposition grown graphene.
    Iqbal MZ; Iqbal MW; Khan MF; Eom J
    Phys Chem Chem Phys; 2015 Aug; 17(32):20551-6. PubMed ID: 26198203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of carrier type and density in exfoliated graphene by interface engineering.
    Wang R; Wang S; Zhang D; Li Z; Fang Y; Qiu X
    ACS Nano; 2011 Jan; 5(1):408-12. PubMed ID: 21133417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-oxidative, controlled exfoliation of graphite in aqueous medium.
    Srivastava PK; Yadav P; Ghosh S
    Nanoscale; 2016 Aug; 8(34):15702-11. PubMed ID: 27523721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable graphene doping by modulating the nanopore geometry on a SiO
    Lim N; Yoo TJ; Kim JT; Pak Y; Kumaresan Y; Kim H; Kim W; Lee BH; Jung GY
    RSC Adv; 2018 Feb; 8(17):9031-9037. PubMed ID: 35541886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diamond as an inert substrate of graphene.
    Hu W; Li Z; Yang J
    J Chem Phys; 2013 Feb; 138(5):054701. PubMed ID: 23406135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focused-laser-enabled p-n junctions in graphene field-effect transistors.
    Kim YD; Bae MH; Seo JT; Kim YS; Kim H; Lee JH; Ahn JR; Lee SW; Chun SH; Park YD
    ACS Nano; 2013 Jul; 7(7):5850-7. PubMed ID: 23782162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride.
    Liu Z; Wang RZ; Liu LM; Lau WM; Yan H
    Phys Chem Chem Phys; 2015 May; 17(17):11692-9. PubMed ID: 25866036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy.
    Xu H; Chen Y; Zhang J; Zhang H
    Small; 2012 Sep; 8(18):2833-40. PubMed ID: 22678822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface coupling and charge doping in graphene on ferroelectric BiAlO
    Yuan J; Dai JQ; Ke C; Wei ZC
    Phys Chem Chem Phys; 2021 Feb; 23(5):3407-3416. PubMed ID: 33506826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-graphene oxide floating gate transistor memory.
    Jang S; Hwang E; Lee JH; Park HS; Cho JH
    Small; 2015 Jan; 11(3):311-8. PubMed ID: 25163911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Charge-Transfer Doping of Graphene Nanoflakes Containing Double-Vacancy (5-8-5) and Stone-Wales (55-77) Defects through Molecular Adsorption.
    Shakourian-Fard M; Jamshidi Z; Kamath G
    Chemphyschem; 2016 Oct; 17(20):3289-3299. PubMed ID: 27432283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping Graphene Transistors Using Vertical Stacked Monolayer WS2 Heterostructures Grown by Chemical Vapor Deposition.
    Tan H; Fan Y; Rong Y; Porter B; Lau CS; Zhou Y; He Z; Wang S; Bhaskaran H; Warner JH
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1644-52. PubMed ID: 26756350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Ground- and Excited-State Charge Transfer at the C60/Graphene Interface.
    Jnawali G; Rao Y; Beck JH; Petrone N; Kymissis I; Hone J; Heinz TF
    ACS Nano; 2015 Jul; 9(7):7175-85. PubMed ID: 26072947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors.
    Park J; Lee WH; Huh S; Sim SH; Kim SB; Cho K; Hong BH; Kim KS
    J Phys Chem Lett; 2011 Apr; 2(8):841-5. PubMed ID: 26295616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the interactions between pentagon-octagon-pentagon defect graphene and organic donor/acceptor molecules: a theoretical study.
    Li JW; Liu YY; Xie LH; Shang JZ; Qian Y; Yi MD; Yu T; Huang W
    Phys Chem Chem Phys; 2015 Feb; 17(7):4919-25. PubMed ID: 25559269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.