BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28094503)

  • 21. Pressure-Induced Charge Transfer Doping of Monolayer Graphene/MoS2 Heterostructure.
    Pandey T; Nayak AP; Liu J; Moran ST; Kim JS; Li LJ; Lin JF; Akinwande D; Singh AK
    Small; 2016 Aug; 12(30):4063-9. PubMed ID: 27323330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong charge-transfer doping of 1 to 10 layer graphene by NO₂.
    Crowther AC; Ghassaei A; Jung N; Brus LE
    ACS Nano; 2012 Feb; 6(2):1865-75. PubMed ID: 22276666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inverse transfer method using polymers with various functional groups for controllable graphene doping.
    Lee SK; Yang JW; Kim HH; Jo SB; Kang B; Bong H; Lee HC; Lee G; Kim KS; Cho K
    ACS Nano; 2014 Aug; 8(8):7968-75. PubMed ID: 25050634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversibly light-modulated dirac point of graphene functionalized with spiropyran.
    Jang AR; Jeon EK; Kang D; Kim G; Kim BS; Kang DJ; Shin HS
    ACS Nano; 2012 Oct; 6(10):9207-13. PubMed ID: 22980316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation of p-doping in CVD Graphene with Substrate Surface Charges.
    Goniszewski S; Adabi M; Shaforost O; Hanham SM; Hao L; Klein N
    Sci Rep; 2016 Mar; 6():22858. PubMed ID: 26956096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the electronic structure of graphene by an organic molecule.
    Lu YH; Chen W; Feng YP; He PM
    J Phys Chem B; 2009 Jan; 113(1):2-5. PubMed ID: 19072320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harnessing denatured protein for controllable bipolar doping of a monolayer graphene.
    Jang SK; Jang JR; Choe WS; Lee S
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1250-6. PubMed ID: 25546483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Edge oxidation effect of chemical-vapor-deposition-grown graphene nanoconstriction.
    Iqbal MW; Iqbal MZ; Jin X; Hwang C; Eom J
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4207-13. PubMed ID: 24564734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules.
    Neubert TJ; Wehrhold M; Kaya NS; Balasubramanian K
    Nanotechnology; 2020 Oct; 31(40):405201. PubMed ID: 32485689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces.
    Cervenka J; Budi A; Dontschuk N; Stacey A; Tadich A; Rietwyk KJ; Schenk A; Edmonds MT; Yin Y; Medhekar N; Kalbac M; Pakes CI
    Nanoscale; 2015 Jan; 7(4):1471-8. PubMed ID: 25502349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations.
    Tang S; Cao Z
    J Chem Phys; 2011 Jan; 134(4):044710. PubMed ID: 21280788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determining the Fermi level by absorption quenching of monolayer graphene by charge transfer doping.
    Adhikari S; Perello DJ; Biswas C; Ghosh A; Luan NV; Park J; Yao F; Rotkin SV; Lee YH
    Nanoscale; 2016 Nov; 8(44):18710-18717. PubMed ID: 27786321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate.
    Christodoulou C; Giannakopoulos A; Ligorio G; Oehzelt M; Timpel M; Niederhausen J; Pasquali L; Giglia A; Parvez K; Müllen K; Beljonne D; Koch N; Nardi MV
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19134-44. PubMed ID: 26280572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts.
    Shi H; Zhao B; Ma J; Bronson MJ; Cai Z; Chen J; Wang Y; Cronin M; Jensen L; Cronin SB
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36252-36258. PubMed ID: 31498591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman fingerprint of doping due to metal adsorbates on graphene.
    Iqbal MW; Singh AK; Iqbal MZ; Eom J
    J Phys Condens Matter; 2012 Aug; 24(33):335301. PubMed ID: 22814217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the Doping Types in Graphene Sheets by N Monoelement.
    Ma C; Liao Q; Sun H; Lei S; Zheng Y; Yin R; Zhao A; Li Q; Wang B
    Nano Lett; 2018 Jan; 18(1):386-394. PubMed ID: 29266951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of atmospheric doping on pressure-dependent Raman scattering in supported graphene.
    Kolesov EA; Tivanov MS; Korolik OV; Kapitanova OO; Fu X; Cho HD; Kang TW; Panin GN
    Beilstein J Nanotechnol; 2018; 9():704-710. PubMed ID: 29527444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversible Switching of Charge Transfer at the Graphene-Mica Interface with Intercalating Molecules.
    Lin H; Cojal González JD; Severin N; Sokolov IM; Rabe JP
    ACS Nano; 2020 Sep; 14(9):11594-11604. PubMed ID: 32865956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sub-molecular spectroscopy and temporary molecular charging of Ni-phthalocyanine on graphene with STM.
    Zhao M; Almarzouqi F; Duverger E; Sonnet P; Dujardin G; Mayne AJ
    Phys Chem Chem Phys; 2018 Jul; 20(29):19507-19514. PubMed ID: 29999070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable Doping in Graphene by Light-Switchable Molecules.
    Shashikala HB; Nicolas CI; Wang XQ
    J Phys Chem C Nanomater Interfaces; 2012 Dec; 116(49):26102-26105. PubMed ID: 23316261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.