These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 28094548)
1. The Progress in Electron Microscopy Studies of Particulate Matters to Be Used as a Standard Monitoring Method for Air Dust Pollution. Sielicki P; Janik H; Guzman A; Namieśnik J Crit Rev Anal Chem; 2011; 41(4):314-334. PubMed ID: 28094548 [TBL] [Abstract][Full Text] [Related]
2. Characterization of PM(2.5) in the ambient air of Shanghai City by analyzing individual particles. Yue W; Li X; Liu J; Li Y; Yu X; Deng B; Wan T; Zhang G; Huang Y; He W; Hua W; Shao L; Li W; Yang S Sci Total Environ; 2006 Sep; 368(2-3):916-25. PubMed ID: 16782173 [TBL] [Abstract][Full Text] [Related]
3. Electron microscopic evaluation of atmospheric dust. Friedrichs KH Med Lav; 1989; 80(1):64-70. PubMed ID: 2755385 [TBL] [Abstract][Full Text] [Related]
4. Saharan dust contribution to PM₁₀, PM₂.₅ and PM₁ in urban and suburban areas of Rome: a comparison between single-particle SEM-EDS analysis and whole-sample PIXE analysis. Matassoni L; Pratesi G; Centioli D; Cadoni F; Lucarelli F; Nava S; Malesani P J Environ Monit; 2011 Mar; 13(3):732-42. PubMed ID: 21308140 [TBL] [Abstract][Full Text] [Related]
5. Characterization of coarse particulate matter in school gyms. Braniš M; Šafránek J Environ Res; 2011 May; 111(4):485-91. PubMed ID: 21458792 [TBL] [Abstract][Full Text] [Related]
6. Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles. Kaegi R; Gasser P J Microsc; 2006 Nov; 224(Pt 2):140-5. PubMed ID: 17204060 [TBL] [Abstract][Full Text] [Related]
7. Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio. Ault AP; Peters TM; Sawvel EJ; Casuccio GS; Willis RD; Norris GA; Grassian VH Environ Sci Technol; 2012 Apr; 46(8):4331-9. PubMed ID: 22435663 [TBL] [Abstract][Full Text] [Related]
8. Improving the foundation for particulate matter risk assessment by individual nanoparticle statistics from electron microscopy analysis. Brostrøm A; Kling KI; Koponen IK; Hougaard KS; Kandler K; Mølhave K Sci Rep; 2019 May; 9(1):8093. PubMed ID: 31147577 [TBL] [Abstract][Full Text] [Related]
9. Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Xie RK; Seip HM; Leinum JR; Winje T; Xiao JS Sci Total Environ; 2005 May; 343(1-3):261-72. PubMed ID: 15862850 [TBL] [Abstract][Full Text] [Related]
10. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations. Chen B; Yamada M; Iwasaka Y; Zhang D; Wang H; Wang Z; Lei H; Shi G Environ Geochem Health; 2015 Oct; 37(5):791-800. PubMed ID: 25537163 [TBL] [Abstract][Full Text] [Related]
11. Size and elemental composition of dry-deposited particles during a severe dust storm at a coastal site of Eastern China. Niu H; Zhang D; Hu W; Shi J; Li R; Gao H; Pian W; Hu M J Environ Sci (China); 2016 Feb; 40():161-8. PubMed ID: 26969556 [TBL] [Abstract][Full Text] [Related]
12. Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry. Choël M; Deboudt K; Osán J; Flament P; Van Grieken R Anal Chem; 2005 Sep; 77(17):5686-92. PubMed ID: 16131082 [TBL] [Abstract][Full Text] [Related]
13. Characterization of size-specific particulate matter emission rates for a simulated medical laser procedure--a pilot study. Lopez R; Lacey SE; Lippert JF; Liu LC; Esmen NA; Conroy LM Ann Occup Hyg; 2015 May; 59(4):514-24. PubMed ID: 25587187 [TBL] [Abstract][Full Text] [Related]
14. The inclusion of atmospheric particles into the bark suber of ash trees. Catinon M; Ayrault S; Boudouma O; Asta J; Tissut M; Ravanel P Chemosphere; 2009 Nov; 77(10):1313-20. PubMed ID: 19846195 [TBL] [Abstract][Full Text] [Related]
15. Characterization and morphological analysis of individual aerosol of PM Bharti SK; Kumar D; Anand S; Poonam ; Barman SC; Kumar N Micron; 2017 Dec; 103():90-98. PubMed ID: 29031165 [TBL] [Abstract][Full Text] [Related]
16. PM10 composition during an intense Saharan dust transport event over Athens (Greece). Remoundaki E; Bourliva A; Kokkalis P; Mamouri RE; Papayannis A; Grigoratos T; Samara C; Tsezos M Sci Total Environ; 2011 Sep; 409(20):4361-72. PubMed ID: 21724238 [TBL] [Abstract][Full Text] [Related]
17. Complex Aerosol Characterization by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopy. Brostrøm A; Kling KI; Hougaard KS; Mølhave K Sci Rep; 2020 Jun; 10(1):9150. PubMed ID: 32499579 [TBL] [Abstract][Full Text] [Related]
18. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
19. Black soiling of an architectural limestone during two-year term exposure to urban air in the city of Granada (S Spain). Urosevic M; Yebra-Rodríguez A; Sebastián-Pardo E; Cardell C Sci Total Environ; 2012 Jan; 414():564-75. PubMed ID: 22153605 [TBL] [Abstract][Full Text] [Related]
20. A new sample preparation protocol for SEM and TEM particulate matter analysis. Sinha A; Ischia G; Straffelini G; Gialanella S Ultramicroscopy; 2021 Nov; 230():113365. PubMed ID: 34358961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]