These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 28094560)
1. Systemic Metabolite Changes in Wild-type C57BL/6 Mice Fed Black Raspberries. Pan P; Skaer CW; Wang HT; Kreiser MA; Stirdivant SM; Oshima K; Huang YW; Young MR; Wang LS Nutr Cancer; 2017; 69(2):299-306. PubMed ID: 28094560 [TBL] [Abstract][Full Text] [Related]
2. Black raspberries suppress colonic adenoma development in ApcMin/+ mice: relation to metabolite profiles. Pan P; Skaer CW; Wang HT; Stirdivant SM; Young MR; Oshima K; Stoner GD; Lechner JF; Huang YW; Wang LS Carcinogenesis; 2015 Oct; 36(10):1245-53. PubMed ID: 26246425 [TBL] [Abstract][Full Text] [Related]
3. Loss of free fatty acid receptor 2 enhances colonic adenoma development and reduces the chemopreventive effects of black raspberries in ApcMin/+ mice. Pan P; W Skaer C; Wang HT; Oshima K; Huang YW; Yu J; Zhang J; M Yearsley M; A Agle K; R Drobyski W; Chen X; Wang LS Carcinogenesis; 2017 Jan; 38(1):86-93. PubMed ID: 27866157 [TBL] [Abstract][Full Text] [Related]
4. Beneficial Regulation of Metabolic Profiles by Black Raspberries in Human Colorectal Cancer Patients. Pan P; Skaer CW; Stirdivant SM; Young MR; Stoner GD; Lechner JF; Huang YW; Wang LS Cancer Prev Res (Phila); 2015 Aug; 8(8):743-50. PubMed ID: 26054356 [TBL] [Abstract][Full Text] [Related]
5. Modification of Diet to Reduce the Stemness and Tumorigenicity of Murine and Human Intestinal Cells. May S; Greenow KR; Higgins AT; Derrick AV; Taylor E; Pan P; Konstantinou M; Nixon C; Wooley TE; Sansom OJ; Wang LS; Parry L Mol Nutr Food Res; 2022 Oct; 66(19):e2200234. PubMed ID: 36045438 [TBL] [Abstract][Full Text] [Related]
6. Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats. Pan P; Lam V; Salzman N; Huang YW; Yu J; Zhang J; Wang LS Nutr Cancer; 2017; 69(6):943-951. PubMed ID: 28718724 [TBL] [Abstract][Full Text] [Related]
7. Dietary Black Raspberries Impact the Colonic Microbiome and Phytochemical Metabolites in Mice. Gu J; Thomas-Ahner JM; Riedl KM; Bailey MT; Vodovotz Y; Schwartz SJ; Clinton SK Mol Nutr Food Res; 2019 Apr; 63(8):e1800636. PubMed ID: 30763455 [TBL] [Abstract][Full Text] [Related]
8. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate. Zarepoor L; Lu JT; Zhang C; Wu W; Lepp D; Robinson L; Wanasundara J; Cui S; Villeneuve S; Fofana B; Tsao R; Wood GA; Power KA Am J Physiol Gastrointest Liver Physiol; 2014 Jun; 306(12):G1042-55. PubMed ID: 24763556 [TBL] [Abstract][Full Text] [Related]
9. Dietary administration of black raspberries modulates arsenic biotransformation and reduces urinary 8-oxo-2'-deoxyguanosine in mice. Tu P; Xue J; Bian X; Chi L; Gao B; Leng J; Ru H; Knobloch TJ; Weghorst CM; Lu K Toxicol Appl Pharmacol; 2019 Aug; 377():114633. PubMed ID: 31229487 [TBL] [Abstract][Full Text] [Related]
10. Protocatechuic Acid, a Gut Bacterial Metabolite of Black Raspberries, Inhibits Adenoma Development and Alters Gut Microbiome Profiles in Dong A; Lin CW; Echeveste CE; Huang YW; Oshima K; Yearsley M; Chen X; Yu J; Wang LS J Cancer Prev; 2022 Mar; 27(1):50-57. PubMed ID: 35419306 [TBL] [Abstract][Full Text] [Related]
11. Dietary Supplementation with Black Raspberries Altered the Gut Microbiome Composition in a Mouse Model of Colitis-Associated Colorectal Cancer, although with Differing Effects for a Healthy versus a Western Basal Diet. Rodriguez DM; Hintze KJ; Rompato G; Wettere AJV; Ward RE; Phatak S; Neal C; Armbrust T; Stewart EC; Thomas AJ; Benninghoff AD Nutrients; 2022 Dec; 14(24):. PubMed ID: 36558431 [TBL] [Abstract][Full Text] [Related]
12. Long-term dietary supplementation with saury oil attenuates metabolic abnormalities in mice fed a high-fat diet: combined beneficial effect of omega-3 fatty acids and long-chain monounsaturated fatty acids. Yang ZH; Inoue S; Taniguchi Y; Miyahara H; Iwasaki Y; Takeo J; Sakaue H; Nakaya Y Lipids Health Dis; 2015 Dec; 14():155. PubMed ID: 26627187 [TBL] [Abstract][Full Text] [Related]
13. Preventive Effects by Black Raspberries of Endometrial Carcinoma Initiation and Promotion Induced by a High-Fat Diet. Huang YW; Chen JH; Rader JS; Aguilera-Barrantes I; Wang LS Mol Nutr Food Res; 2019 Jun; 63(12):e1900013. PubMed ID: 30951235 [TBL] [Abstract][Full Text] [Related]
14. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Peiffer DS; Zimmerman NP; Wang LS; Ransom BW; Carmella SG; Kuo CT; Siddiqui J; Chen JH; Oshima K; Huang YW; Hecht SS; Stoner GD Cancer Prev Res (Phila); 2014 Jun; 7(6):574-84. PubMed ID: 24667581 [TBL] [Abstract][Full Text] [Related]
15. Rapid incorporation of ω-3 fatty acids into colonic tissue after oral supplementation in patients with colorectal cancer: a randomized, placebo-controlled intervention trial. Sorensen LS; Rasmussen HH; Aardestrup IV; Thorlacius-Ussing O; Lindorff-Larsen K; Schmidt EB; Calder PC JPEN J Parenter Enteral Nutr; 2014 Jul; 38(5):617-24. PubMed ID: 23788002 [TBL] [Abstract][Full Text] [Related]
16. Dietary Consumption of Black Raspberries or Their Anthocyanin Constituents Alters Innate Immune Cell Trafficking in Esophageal Cancer. Peiffer DS; Wang LS; Zimmerman NP; Ransom BW; Carmella SG; Kuo CT; Chen JH; Oshima K; Huang YW; Hecht SS; Stoner GD Cancer Immunol Res; 2016 Jan; 4(1):72-82. PubMed ID: 26603620 [TBL] [Abstract][Full Text] [Related]
17. Dietary polyunsaturated fatty acids (C18:2 omega6 and C18:3 omega3) do not suppress hepatic lipogenesis. Sealls W; Gonzalez M; Brosnan MJ; Black PN; DiRusso CC Biochim Biophys Acta; 2008 Aug; 1781(8):406-14. PubMed ID: 18655845 [TBL] [Abstract][Full Text] [Related]
18. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo-A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet. Ostermann AI; Waindok P; Schmidt MJ; Chiu CY; Smyl C; Rohwer N; Weylandt KH; Schebb NH PLoS One; 2017; 12(9):e0184470. PubMed ID: 28886129 [TBL] [Abstract][Full Text] [Related]
19. Determination of digestibility, tissue deposition, and metabolism of the omega-3 fatty acid content of krill protein concentrate in growing rats. Bridges KM; Gigliotti JC; Altman S; Jaczynski J; Tou JC J Agric Food Chem; 2010 Mar; 58(5):2830-7. PubMed ID: 20131797 [TBL] [Abstract][Full Text] [Related]
20. Lowering the dietary omega-6: omega-3 does not hinder nonalcoholic fatty-liver disease development in a murine model. Enos RT; Velázquez KT; McClellan JL; Cranford TL; Walla MD; Murphy EA Nutr Res; 2015 May; 35(5):449-59. PubMed ID: 25934114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]