BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28094560)

  • 1. Systemic Metabolite Changes in Wild-type C57BL/6 Mice Fed Black Raspberries.
    Pan P; Skaer CW; Wang HT; Kreiser MA; Stirdivant SM; Oshima K; Huang YW; Young MR; Wang LS
    Nutr Cancer; 2017; 69(2):299-306. PubMed ID: 28094560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Black raspberries suppress colonic adenoma development in ApcMin/+ mice: relation to metabolite profiles.
    Pan P; Skaer CW; Wang HT; Stirdivant SM; Young MR; Oshima K; Stoner GD; Lechner JF; Huang YW; Wang LS
    Carcinogenesis; 2015 Oct; 36(10):1245-53. PubMed ID: 26246425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of free fatty acid receptor 2 enhances colonic adenoma development and reduces the chemopreventive effects of black raspberries in ApcMin/+ mice.
    Pan P; W Skaer C; Wang HT; Oshima K; Huang YW; Yu J; Zhang J; M Yearsley M; A Agle K; R Drobyski W; Chen X; Wang LS
    Carcinogenesis; 2017 Jan; 38(1):86-93. PubMed ID: 27866157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beneficial Regulation of Metabolic Profiles by Black Raspberries in Human Colorectal Cancer Patients.
    Pan P; Skaer CW; Stirdivant SM; Young MR; Stoner GD; Lechner JF; Huang YW; Wang LS
    Cancer Prev Res (Phila); 2015 Aug; 8(8):743-50. PubMed ID: 26054356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of Diet to Reduce the Stemness and Tumorigenicity of Murine and Human Intestinal Cells.
    May S; Greenow KR; Higgins AT; Derrick AV; Taylor E; Pan P; Konstantinou M; Nixon C; Wooley TE; Sansom OJ; Wang LS; Parry L
    Mol Nutr Food Res; 2022 Oct; 66(19):e2200234. PubMed ID: 36045438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats.
    Pan P; Lam V; Salzman N; Huang YW; Yu J; Zhang J; Wang LS
    Nutr Cancer; 2017; 69(6):943-951. PubMed ID: 28718724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary Black Raspberries Impact the Colonic Microbiome and Phytochemical Metabolites in Mice.
    Gu J; Thomas-Ahner JM; Riedl KM; Bailey MT; Vodovotz Y; Schwartz SJ; Clinton SK
    Mol Nutr Food Res; 2019 Apr; 63(8):e1800636. PubMed ID: 30763455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate.
    Zarepoor L; Lu JT; Zhang C; Wu W; Lepp D; Robinson L; Wanasundara J; Cui S; Villeneuve S; Fofana B; Tsao R; Wood GA; Power KA
    Am J Physiol Gastrointest Liver Physiol; 2014 Jun; 306(12):G1042-55. PubMed ID: 24763556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary administration of black raspberries modulates arsenic biotransformation and reduces urinary 8-oxo-2'-deoxyguanosine in mice.
    Tu P; Xue J; Bian X; Chi L; Gao B; Leng J; Ru H; Knobloch TJ; Weghorst CM; Lu K
    Toxicol Appl Pharmacol; 2019 Aug; 377():114633. PubMed ID: 31229487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocatechuic Acid, a Gut Bacterial Metabolite of Black Raspberries, Inhibits Adenoma Development and Alters Gut Microbiome Profiles in
    Dong A; Lin CW; Echeveste CE; Huang YW; Oshima K; Yearsley M; Chen X; Yu J; Wang LS
    J Cancer Prev; 2022 Mar; 27(1):50-57. PubMed ID: 35419306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary Supplementation with Black Raspberries Altered the Gut Microbiome Composition in a Mouse Model of Colitis-Associated Colorectal Cancer, although with Differing Effects for a Healthy versus a Western Basal Diet.
    Rodriguez DM; Hintze KJ; Rompato G; Wettere AJV; Ward RE; Phatak S; Neal C; Armbrust T; Stewart EC; Thomas AJ; Benninghoff AD
    Nutrients; 2022 Dec; 14(24):. PubMed ID: 36558431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term dietary supplementation with saury oil attenuates metabolic abnormalities in mice fed a high-fat diet: combined beneficial effect of omega-3 fatty acids and long-chain monounsaturated fatty acids.
    Yang ZH; Inoue S; Taniguchi Y; Miyahara H; Iwasaki Y; Takeo J; Sakaue H; Nakaya Y
    Lipids Health Dis; 2015 Dec; 14():155. PubMed ID: 26627187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preventive Effects by Black Raspberries of Endometrial Carcinoma Initiation and Promotion Induced by a High-Fat Diet.
    Huang YW; Chen JH; Rader JS; Aguilera-Barrantes I; Wang LS
    Mol Nutr Food Res; 2019 Jun; 63(12):e1900013. PubMed ID: 30951235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid.
    Peiffer DS; Zimmerman NP; Wang LS; Ransom BW; Carmella SG; Kuo CT; Siddiqui J; Chen JH; Oshima K; Huang YW; Hecht SS; Stoner GD
    Cancer Prev Res (Phila); 2014 Jun; 7(6):574-84. PubMed ID: 24667581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid incorporation of ω-3 fatty acids into colonic tissue after oral supplementation in patients with colorectal cancer: a randomized, placebo-controlled intervention trial.
    Sorensen LS; Rasmussen HH; Aardestrup IV; Thorlacius-Ussing O; Lindorff-Larsen K; Schmidt EB; Calder PC
    JPEN J Parenter Enteral Nutr; 2014 Jul; 38(5):617-24. PubMed ID: 23788002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary Consumption of Black Raspberries or Their Anthocyanin Constituents Alters Innate Immune Cell Trafficking in Esophageal Cancer.
    Peiffer DS; Wang LS; Zimmerman NP; Ransom BW; Carmella SG; Kuo CT; Chen JH; Oshima K; Huang YW; Hecht SS; Stoner GD
    Cancer Immunol Res; 2016 Jan; 4(1):72-82. PubMed ID: 26603620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary polyunsaturated fatty acids (C18:2 omega6 and C18:3 omega3) do not suppress hepatic lipogenesis.
    Sealls W; Gonzalez M; Brosnan MJ; Black PN; DiRusso CC
    Biochim Biophys Acta; 2008 Aug; 1781(8):406-14. PubMed ID: 18655845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo-A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet.
    Ostermann AI; Waindok P; Schmidt MJ; Chiu CY; Smyl C; Rohwer N; Weylandt KH; Schebb NH
    PLoS One; 2017; 12(9):e0184470. PubMed ID: 28886129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of digestibility, tissue deposition, and metabolism of the omega-3 fatty acid content of krill protein concentrate in growing rats.
    Bridges KM; Gigliotti JC; Altman S; Jaczynski J; Tou JC
    J Agric Food Chem; 2010 Mar; 58(5):2830-7. PubMed ID: 20131797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lowering the dietary omega-6: omega-3 does not hinder nonalcoholic fatty-liver disease development in a murine model.
    Enos RT; Velázquez KT; McClellan JL; Cranford TL; Walla MD; Murphy EA
    Nutr Res; 2015 May; 35(5):449-59. PubMed ID: 25934114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.