BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 28094997)

  • 41. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of Transparent Multilayer Circuits by Inkjet Printing.
    Jiang J; Bao B; Li M; Sun J; Zhang C; Li Y; Li F; Yao X; Song Y
    Adv Mater; 2016 Feb; 28(7):1420-6. PubMed ID: 26643356
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds.
    Kang H; Sowade E; Baumann RR
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1682-7. PubMed ID: 24433059
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On-Demand Printing of Wearable Thermotherapy Pad.
    Moon DI; Plečkaitytė G; Choi T; Seol ML; Kim B; Lee D; Han JW; Meyyappan M
    Adv Healthc Mater; 2020 Feb; 9(4):e1901575. PubMed ID: 31945277
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EGaIn-Assisted Room-Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet-Printed, Thin-Film Electronics.
    Tavakoli M; Malakooti MH; Paisana H; Ohm Y; Marques DG; Alhais Lopes P; Piedade AP; de Almeida AT; Majidi C
    Adv Mater; 2018 May; ():e1801852. PubMed ID: 29845674
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks.
    Ivanišević I; Kovačić M; Zubak M; Ressler A; Krivačić S; Katančić Z; Gudan Pavlović I; Kassal P
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fine conductive line printing of high viscosity CuO ink using near field electrospinning (NFES).
    Rahman MK; Lee JS; Kwon KS
    Sci Rep; 2023 Oct; 13(1):17668. PubMed ID: 37848513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal Coating Synthesized by Inkjet Printing and Intense Pulsed-Light Sintering.
    Meng F; Huang J; Zhang H; Zhao P; Li P; Wang C
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010131
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns.
    Cao L; Bai X; Lin Z; Zhang P; Deng S; Du X; Li W
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inkjet Printed Parallel Plate Capacitors Using PVP Polymer Dielectric Ink on Flexible Polyimide Substrates.
    Mohapatra A; Sayema Tuli K; Liu KY; Fujiwara T; Robert Hewitt W; Andrasik F; Bashir Morshed I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4277-4280. PubMed ID: 30441299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.
    Hwang YT; Chung WH; Jang YR; Kim HS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Substrate-facilitated nanoparticle sintering and component interconnection procedure.
    Allen M; Leppäniemi J; Vilkman M; Alastalo A; Mattila T
    Nanotechnology; 2010 Nov; 21(47):475204. PubMed ID: 21030761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inkjet-printed gold electrodes on paper: characterization and functionalization.
    Määttänen A; Ihalainen P; Pulkkinen P; Wang S; Tenhu H; Peltonen J
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):955-64. PubMed ID: 22233965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Printed Electronics as Prepared by Inkjet Printing.
    Beedasy V; Smith PJ
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033206
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of laser intensity on the characteristic of inkjet-printed silver nanoparticles during continuous laser sintering.
    Moon YJ; Kang H; Kang K; Hwang JY; Lee JH; Moon SJ
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8631-5. PubMed ID: 25958575
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing.
    Sleczkowski P; Borkowski M; Zajaczkowska H; Ulanski J; Pisula W; Marszalek T
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33167331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tailoring a Silver Paste for Additive Manufacturing of Co-Fired Ferrite Magnetic Components.
    Liu L; Ding C; Mei Y; Lu G
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics.
    Tai YL; Yang ZG
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17104-11. PubMed ID: 26133543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.