These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28095402)

  • 1. A General Shear-Dependent Model for Thrombus Formation.
    Yazdani A; Li H; Humphrey JD; Karniadakis GE
    PLoS Comput Biol; 2017 Jan; 13(1):e1005291. PubMed ID: 28095402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels.
    Zheng X; Yazdani A; Li H; Humphrey JD; Karniadakis GE
    PLoS Comput Biol; 2020 Apr; 16(4):e1007709. PubMed ID: 32343724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrombus Formation at High Shear Rates.
    Casa LDC; Ku DN
    Annu Rev Biomed Eng; 2017 Jun; 19():415-433. PubMed ID: 28441034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coagulation Factor XI Promotes Distal Platelet Activation and Single Platelet Consumption in the Bloodstream Under Shear Flow.
    Zilberman-Rudenko J; Itakura A; Wiesenekker CP; Vetter R; Maas C; Gailani D; Tucker EI; Gruber A; Gerdes C; McCarty OJ
    Arterioscler Thromb Vasc Biol; 2016 Mar; 36(3):510-7. PubMed ID: 26769048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow.
    Leiderman K; Fogelson AL
    Math Med Biol; 2011 Mar; 28(1):47-84. PubMed ID: 20439306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of high shear rate in thrombosis.
    Casa LD; Deaton DH; Ku DN
    J Vasc Surg; 2015 Apr; 61(4):1068-80. PubMed ID: 25704412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets.
    Mailhac A; Badimon JJ; Fallon JT; Fernández-Ortiz A; Meyer B; Chesebro JH; Fuster V; Badimon L
    Circulation; 1994 Aug; 90(2):988-96. PubMed ID: 8044972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Stenotic Microchannels to Study Thrombus Formation in Shear Gradients: Influence of Shear Forces and Human Platelet-Related Factors.
    Lui M; Gardiner EE; Arthur JF; Pinar I; Lee WM; Ryan K; Carberry J; Andrews RK
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biorheology of occlusive thrombi formation under high shear: in vitro growth and shrinkage.
    van Rooij BJM; Závodszky G; Hoekstra AG; Ku DN
    Sci Rep; 2020 Oct; 10(1):18604. PubMed ID: 33122712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hemodynamics of thrombus formation in arteries.
    Ouriel K; Donayre C; Shortell CK; Cimino C; Donnelly J; Oxley D; Green RM
    J Vasc Surg; 1991 Dec; 14(6):757-62; discussion 762-3. PubMed ID: 1960805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms initiating platelet thrombus formation.
    Ruggeri ZM
    Thromb Haemost; 1997 Jul; 78(1):611-6. PubMed ID: 9198225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods to Determine the Lagrangian Shear Experienced by Platelets during Thrombus Growth.
    Pinar IP; Arthur JF; Andrews RK; Gardiner EE; Ryan K; Carberry J
    PLoS One; 2015; 10(12):e0144860. PubMed ID: 26660525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platelet Control of Fibrin Distribution and Microelasticity in Thrombus Formation Under Flow.
    Swieringa F; Baaten CC; Verdoold R; Mastenbroek TG; Rijnveld N; van der Laan KO; Breel EJ; Collins PW; Lancé MD; Henskens YM; Cosemans JM; Heemskerk JW; van der Meijden PE
    Arterioscler Thromb Vasc Biol; 2016 Apr; 36(4):692-9. PubMed ID: 26848157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow.
    Folie BJ; McIntire LV
    Biophys J; 1989 Dec; 56(6):1121-41. PubMed ID: 2611327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of von Willebrand factor in thrombus formation.
    Ruggeri ZM
    Thromb Res; 2007; 120 Suppl 1(Suppl 1):S5-9. PubMed ID: 17493665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuum modeling of thrombus formation and growth under different shear rates.
    Rezaeimoghaddam M; van de Vosse FN
    J Biomech; 2022 Feb; 132():110915. PubMed ID: 35032838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method.
    Tosenberger A; Ataullakhanov F; Bessonov N; Panteleev M; Tokarev A; Volpert V
    J Math Biol; 2016 Feb; 72(3):649-81. PubMed ID: 26001742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of von Willebrand factor in platelet thrombus formation.
    Ruggeri ZM
    Ann Med; 2000 Dec; 32 Suppl 1():2-9. PubMed ID: 11209976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions.
    Bouchnita A; Terekhov K; Nony P; Vassilevski Y; Volpert V
    PLoS One; 2020; 15(7):e0235392. PubMed ID: 32726315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of arterial flow on platelet activation, thrombus growth, and stabilization.
    Cosemans JM; Angelillo-Scherrer A; Mattheij NJ; Heemskerk JW
    Cardiovasc Res; 2013 Jul; 99(2):342-52. PubMed ID: 23667186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.