These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 28095416)
1. Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies. de Vlaming R; Okbay A; Rietveld CA; Johannesson M; Magnusson PK; Uitterlinden AG; van Rooij FJ; Hofman A; Groenen PJ; Thurik AR; Koellinger PD PLoS Genet; 2017 Jan; 13(1):e1006495. PubMed ID: 28095416 [TBL] [Abstract][Full Text] [Related]
2. Polygenic power calculator: Statistical power and polygenic prediction accuracy of genome-wide association studies of complex traits. Wu T; Liu Z; Mak TSH; Sham PC Front Genet; 2022; 13():989639. PubMed ID: 36299579 [TBL] [Abstract][Full Text] [Related]
3. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Zheng J; Erzurumluoglu AM; Elsworth BL; Kemp JP; Howe L; Haycock PC; Hemani G; Tansey K; Laurin C; ; Pourcain BS; Warrington NM; Finucane HK; Price AL; Bulik-Sullivan BK; Anttila V; Paternoster L; Gaunt TR; Evans DM; Neale BM Bioinformatics; 2017 Jan; 33(2):272-279. PubMed ID: 27663502 [TBL] [Abstract][Full Text] [Related]
4. Inferring the Nature of Missing Heritability in Human Traits Using Data from the GWAS Catalog. López-Cortegano E; Caballero A Genetics; 2019 Jul; 212(3):891-904. PubMed ID: 31123044 [TBL] [Abstract][Full Text] [Related]
5. GWEHS: A Genome-Wide Effect Sizes and Heritability Screener. López-Cortegano E; Caballero A Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31344961 [TBL] [Abstract][Full Text] [Related]
6. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes. Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070 [TBL] [Abstract][Full Text] [Related]
7. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach. Guo B; Wu B Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000 [TBL] [Abstract][Full Text] [Related]
8. Design considerations for genetic linkage and association studies. Nsengimana J; Bishop DT Methods Mol Biol; 2012; 850():237-62. PubMed ID: 22307702 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing. Tan C; Wu Z; Ren J; Huang Z; Liu D; He X; Prakapenka D; Zhang R; Li N; Da Y; Hu X Genet Sel Evol; 2017 Mar; 49(1):35. PubMed ID: 28356075 [TBL] [Abstract][Full Text] [Related]
10. A new method for estimating effect size distribution and heritability from genome-wide association summary results. Zhang L; Shen YP; Hu WZ; Ran S; Lin Y; Lei SF; Zhang YH; Papasian CJ; Yi N; Pei YF Hum Genet; 2016 Feb; 135(2):171-84. PubMed ID: 26661625 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis. Uimari O; Rahmioglu N; Nyholt DR; Vincent K; Missmer SA; Becker C; Morris AP; Montgomery GW; Zondervan KT Hum Reprod; 2017 Apr; 32(4):780-793. PubMed ID: 28333195 [TBL] [Abstract][Full Text] [Related]
12. Combining multi-population datasets for joint genome-wide association and meta-analyses: The case of bovine milk fat composition traits. Gebreyesus G; Buitenhuis AJ; Poulsen NA; Visker MHPW; Zhang Q; van Valenberg HJF; Sun D; Bovenhuis H J Dairy Sci; 2019 Dec; 102(12):11124-11141. PubMed ID: 31563305 [TBL] [Abstract][Full Text] [Related]
13. The statistical power of genome-wide association studies for threshold traits with different frequencies of causal variants. Khanzadeh H; Ghavi Hossein-Zadeh N; Ghovvati S Genetica; 2022 Feb; 150(1):51-57. PubMed ID: 34705138 [TBL] [Abstract][Full Text] [Related]
14. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
15. An efficient unified model for genome-wide association studies and genomic selection. Li H; Su G; Jiang L; Bao Z Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943 [TBL] [Abstract][Full Text] [Related]
16. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data. Masotti M; Guo B; Wu B Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400 [TBL] [Abstract][Full Text] [Related]
17. Finding associated variants in genome-wide association studies on multiple traits. Gai L; Eskin E Bioinformatics; 2018 Jul; 34(13):i467-i474. PubMed ID: 29949991 [TBL] [Abstract][Full Text] [Related]
18. Methods for meta-analysis of multiple traits using GWAS summary statistics. Ray D; Boehnke M Genet Epidemiol; 2018 Mar; 42(2):134-145. PubMed ID: 29226385 [TBL] [Abstract][Full Text] [Related]
19. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics. Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509 [TBL] [Abstract][Full Text] [Related]
20. Statistical power and utility of meta-analysis methods for cross-phenotype genome-wide association studies. Zhu Z; Anttila V; Smoller JW; Lee PH PLoS One; 2018; 13(3):e0193256. PubMed ID: 29494641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]