BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 28095612)

  • 21. Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis.
    Liu Y; Wang C; Destin G; Szaro BG
    Eur J Neurosci; 2015 May; 41(10):1263-75. PubMed ID: 25656701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental regulation of sensory axon regeneration in the absence of growth cones.
    Jones SL; Selzer ME; Gallo G
    J Neurobiol; 2006 Dec; 66(14):1630-45. PubMed ID: 17058187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Axon guidance by growth cones and branches: common cytoskeletal and signaling mechanisms.
    Dent EW; Tang F; Kalil K
    Neuroscientist; 2003 Oct; 9(5):343-53. PubMed ID: 14580119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches.
    Armijo-Weingart L; Gallo G
    Mol Cell Neurosci; 2017 Oct; 84():36-47. PubMed ID: 28359843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones.
    Piper M; Lee AC; van Horck FP; McNeilly H; Lu TB; Harris WA; Holt CE
    Neural Dev; 2015 Feb; 10():3. PubMed ID: 25886013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the impact of the phosphorylation status of tyrosine residues within the TACC domain of TACC3 on microtubule behavior during axon growth and guidance.
    Erdogan B; St Clair RM; Cammarata GM; Zaccaro T; Ballif BA; Lowery LA
    Cytoskeleton (Hoboken); 2020 Jul; 77(7):277-291. PubMed ID: 32543081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the Axon as an Active Partner with the Growth Cone in Axonal Elongation.
    de Rooij R; Kuhl E; Miller KE
    Biophys J; 2018 Nov; 115(9):1783-1795. PubMed ID: 30309611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of Drebrin and Its Role in Neuritogenesis.
    Gordon-Weeks PR
    Adv Exp Med Biol; 2017; 1006():49-60. PubMed ID: 28865014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axon Growth of CNS Neurons in Three Dimensions Is Amoeboid and Independent of Adhesions.
    Santos TE; Schaffran B; Broguière N; Meyn L; Zenobi-Wong M; Bradke F
    Cell Rep; 2020 Jul; 32(3):107907. PubMed ID: 32698008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of ECM degradation and axon guidance by growth cone invadosomes.
    Santiago-Medina M; Gregus KA; Nichol RH; O'Toole SM; Gomez TM
    Development; 2015 Feb; 142(3):486-96. PubMed ID: 25564649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.
    Gallo G
    J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microtubules and growth cone function.
    Gordon-Weeks PR
    J Neurobiol; 2004 Jan; 58(1):70-83. PubMed ID: 14598371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axon guidance: proteins turnover in turning growth cones.
    Gallo G; Letourneau P
    Curr Biol; 2002 Aug; 12(16):R560-2. PubMed ID: 12194838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axon guidance receptors direct growth cone pathfinding: rivalry at the leading edge.
    Cooper HM
    Int J Dev Biol; 2002; 46(4):621-31. PubMed ID: 12141450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes.
    Kloc M; Bilinski S; Kubiak JZ
    Methods Mol Biol; 2016; 1457():179-90. PubMed ID: 27557581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DSCR1 is required for both axonal growth cone extension and steering.
    Wang W; Rai A; Hur EM; Smilansky Z; Chang KT; Min KT
    J Cell Biol; 2016 May; 213(4):451-62. PubMed ID: 27185837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beyond the cytoskeleton: The emerging role of organelles and membrane remodeling in the regulation of axon collateral branches.
    Winkle CC; Taylor KL; Dent EW; Gallo G; Greif KF; Gupton SL
    Dev Neurobiol; 2016 Dec; 76(12):1293-1307. PubMed ID: 27112549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.
    Sainath R; Ketschek A; Grandi L; Gallo G
    Dev Neurobiol; 2017 Apr; 77(4):454-473. PubMed ID: 27429169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation.
    Tan M; Cha C; Ye Y; Zhang J; Li S; Wu F; Gong S; Guo G
    Neural Plast; 2015; 2015():947423. PubMed ID: 26064693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and Degeneration of Retinal Ganglion Cell Axons in
    Choi B; Kim H; Jang J; Park S; Jung H
    Mol Cells; 2022 Nov; 45(11):846-854. PubMed ID: 36380734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.