These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 28095695)
1. Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2. Srnec M; Solomon EI J Am Chem Soc; 2017 Feb; 139(6):2396-2407. PubMed ID: 28095695 [TBL] [Abstract][Full Text] [Related]
2. Chlorination versus hydroxylation selectivity mediated by the non-heme iron halogenase WelO5. Zhang X; Wang Z; Gao J; Liu W Phys Chem Chem Phys; 2020 Apr; 22(16):8699-8712. PubMed ID: 32270839 [TBL] [Abstract][Full Text] [Related]
3. Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity. Srnec M; Wong SD; Matthews ML; Krebs C; Bollinger JM; Solomon EI J Am Chem Soc; 2016 Apr; 138(15):5110-22. PubMed ID: 27021969 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of selective halogenation by SyrB2: a computational study. Borowski T; Noack H; Radoń M; Zych K; Siegbahn PE J Am Chem Soc; 2010 Sep; 132(37):12887-98. PubMed ID: 20738087 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates. Ansari A; Kaushik A; Rajaraman G J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840 [TBL] [Abstract][Full Text] [Related]
6. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Matthews ML; Neumann CS; Miles LA; Grove TL; Booker SJ; Krebs C; Walsh CT; Bollinger JM Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17723-8. PubMed ID: 19815524 [TBL] [Abstract][Full Text] [Related]
7. Regioselectivity of substrate hydroxylation versus halogenation by a nonheme iron(IV)-oxo complex: possibility of rearrangement pathways. Quesne MG; de Visser SP J Biol Inorg Chem; 2012 Aug; 17(6):841-52. PubMed ID: 22580819 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of an open active site conformation of nonheme iron halogenase CytC3. Wong C; Fujimori DG; Walsh CT; Drennan CL J Am Chem Soc; 2009 Apr; 131(13):4872-9. PubMed ID: 19281171 [TBL] [Abstract][Full Text] [Related]
10. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Wong SD; Srnec M; Matthews ML; Liu LV; Kwak Y; Park K; Bell CB; Alp EE; Zhao J; Yoda Y; Kitao S; Seto M; Krebs C; Bollinger JM; Solomon EI Nature; 2013 Jul; 499(7458):320-3. PubMed ID: 23868262 [TBL] [Abstract][Full Text] [Related]
11. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height. de Visser SP J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691 [TBL] [Abstract][Full Text] [Related]
12. Manganese porphyrins catalyze selective C-H bond halogenations. Liu W; Groves JT J Am Chem Soc; 2010 Sep; 132(37):12847-9. PubMed ID: 20806921 [TBL] [Abstract][Full Text] [Related]
13. Geometric and electronic structure contributions to function in non-heme iron enzymes. Solomon EI; Light KM; Liu LV; Srnec M; Wong SD Acc Chem Res; 2013 Nov; 46(11):2725-39. PubMed ID: 24070107 [TBL] [Abstract][Full Text] [Related]
14. Nuclear Resonance Vibrational Spectroscopic Definition of the Facial Triad Fe Srnec M; Iyer SR; Dassama LMK; Park K; Wong SD; Sutherlin KD; Yoda Y; Kobayashi Y; Kurokuzu M; Saito M; Seto M; Krebs C; Bollinger JM; Solomon EI J Am Chem Soc; 2020 Nov; 142(44):18886-18896. PubMed ID: 33103886 [TBL] [Abstract][Full Text] [Related]
15. Modeling Non-Heme Iron Halogenases: High-Spin Oxoiron(IV)-Halide Complexes That Halogenate C-H Bonds. Puri M; Biswas AN; Fan R; Guo Y; Que L J Am Chem Soc; 2016 Mar; 138(8):2484-7. PubMed ID: 26875530 [TBL] [Abstract][Full Text] [Related]
17. The effect of the axial ligand on distinct reaction tunneling for methane hydroxylation by nonheme iron(IV)-oxo complexes. Tang H; Guan J; Zhang L; Liu H; Huang X Phys Chem Chem Phys; 2012 Oct; 14(37):12863-74. PubMed ID: 22890313 [TBL] [Abstract][Full Text] [Related]
18. Peroxo and oxo intermediates in mononuclear nonheme iron enzymes and related active sites. Solomon EI; Wong SD; Liu LV; Decker A; Chow MS Curr Opin Chem Biol; 2009 Feb; 13(1):99-113. PubMed ID: 19278895 [TBL] [Abstract][Full Text] [Related]
19. Theoretical investigation on the oxidative chlorination performed by a biomimetic non-heme iron catalyst. Noack H; Siegbahn PE J Biol Inorg Chem; 2007 Nov; 12(8):1151-62. PubMed ID: 17701061 [TBL] [Abstract][Full Text] [Related]
20. What Drives Radical Halogenation versus Hydroxylation in Mononuclear Nonheme Iron Complexes? A Combined Experimental and Computational Study. Gérard EF; Yadav V; Goldberg DP; de Visser SP J Am Chem Soc; 2022 Jun; 144(24):10752-10767. PubMed ID: 35537044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]