These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Tepaamorndech S; Huang L; Kirschke CP Cancer Lett; 2011 Sep; 308(1):33-42. PubMed ID: 21621325 [TBL] [Abstract][Full Text] [Related]
4. Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Pittoni P; Tripodo C; Piconese S; Mauri G; Parenza M; Rigoni A; Sangaletti S; Colombo MP Cancer Res; 2011 Sep; 71(18):5987-97. PubMed ID: 21896641 [TBL] [Abstract][Full Text] [Related]
5. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy. Haram KM; Peltier HJ; Lu B; Bhasin M; Otu HH; Choy B; Regan M; Libermann TA; Latham GJ; Sanda MG; Arredouani MS Prostate; 2008 Oct; 68(14):1517-30. PubMed ID: 18668517 [TBL] [Abstract][Full Text] [Related]
6. Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Gupta S; Ahmad N; Marengo SR; MacLennan GT; Greenberg NM; Mukhtar H Cancer Res; 2000 Sep; 60(18):5125-33. PubMed ID: 11016639 [TBL] [Abstract][Full Text] [Related]
7. Non-invasive bioluminescent detection of prostate cancer growth and metastasis in a bigenic transgenic mouse model. Hsieh CL; Xie Z; Yu J; Martin WD; Datta MW; Wu GJ; Chung LW Prostate; 2007 May; 67(7):685-91. PubMed ID: 17342752 [TBL] [Abstract][Full Text] [Related]
8. Interspecies comparison of prostate cancer gene-expression profiles reveals genes associated with aggressive tumors. Kela I; Harmelin A; Waks T; Orr-Urtreger A; Domany E; Eshhar Z Prostate; 2009 Jul; 69(10):1034-44. PubMed ID: 19343735 [TBL] [Abstract][Full Text] [Related]
9. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Foster BA; Gingrich JR; Kwon ED; Madias C; Greenberg NM Cancer Res; 1997 Aug; 57(16):3325-30. PubMed ID: 9269988 [TBL] [Abstract][Full Text] [Related]
10. Prostatic angiogenic responses in late life: antiangiogenic therapy influences and relation with the glandular microenvironment in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Montico F; Kido LA; Hetzl AC; Cagnon VH Prostate; 2015 Apr; 75(5):484-99. PubMed ID: 25521760 [TBL] [Abstract][Full Text] [Related]
11. Loss of MyD88 leads to more aggressive TRAMP prostate cancer and influences tumor infiltrating lymphocytes. Peek EM; Song W; Zhang H; Huang J; Chin AI Prostate; 2015 Apr; 75(5):463-73. PubMed ID: 25597486 [TBL] [Abstract][Full Text] [Related]
12. Epigenetic modifications of Nrf2 by 3,3'-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. Wu TY; Khor TO; Su ZY; Saw CL; Shu L; Cheung KL; Huang Y; Yu S; Kong AN AAPS J; 2013 Jul; 15(3):864-74. PubMed ID: 23658110 [TBL] [Abstract][Full Text] [Related]
13. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Shukla S; MacLennan GT; Flask CA; Fu P; Mishra A; Resnick MI; Gupta S Cancer Res; 2007 Jul; 67(14):6925-35. PubMed ID: 17638904 [TBL] [Abstract][Full Text] [Related]
14. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice. Fritz WA; Lin TM; Cardiff RD; Peterson RE Carcinogenesis; 2007 Feb; 28(2):497-505. PubMed ID: 17052998 [TBL] [Abstract][Full Text] [Related]
15. Nintedanib antiangiogenic inhibitor effectiveness in delaying adenocarcinoma progression in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP). da Silva RF; Nogueira-Pangrazi E; Kido LA; Montico F; Arana S; Kumar D; Raina K; Agarwal R; Cagnon VHA J Biomed Sci; 2017 May; 24(1):31. PubMed ID: 28499383 [TBL] [Abstract][Full Text] [Related]
16. Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model. Pflug BR; Pecher SM; Brink AW; Nelson JB; Foster BA Prostate; 2003 Nov; 57(3):245-54. PubMed ID: 14518031 [TBL] [Abstract][Full Text] [Related]
17. Akt/cAMP-responsive element binding protein/cyclin D1 network: a novel target for prostate cancer inhibition in transgenic adenocarcinoma of mouse prostate model mediated by Nexrutine, a Phellodendron amurense bark extract. Kumar AP; Bhaskaran S; Ganapathy M; Crosby K; Davis MD; Kochunov P; Schoolfield J; Yeh IT; Troyer DA; Ghosh R Clin Cancer Res; 2007 May; 13(9):2784-94. PubMed ID: 17473212 [TBL] [Abstract][Full Text] [Related]
18. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) slows cancer development but increases metastases in TRAMP prostate cancer prone mice. Husaini Y; Qiu MR; Lockwood GP; Luo XW; Shang P; Kuffner T; Tsai VW; Jiang L; Russell PJ; Brown DA; Breit SN PLoS One; 2012; 7(8):e43833. PubMed ID: 22952779 [TBL] [Abstract][Full Text] [Related]
19. Increased expression of MUC18 correlates with the metastatic progression of mouse prostate adenocarcinoma in the TRAMP model. Wu GJ; Fu P; Chiang CF; Huss WJ; Greenberg NM; Wu MW J Urol; 2005 May; 173(5):1778-83. PubMed ID: 15821586 [TBL] [Abstract][Full Text] [Related]
20. Chinese medicinal herb Scutellaria barbata modulates apoptosis and cell survival in murine and human prostate cancer cells and tumor development in TRAMP mice. Wong BY; Nguyen DL; Lin T; Wong HH; Cavalcante A; Greenberg NM; Hausted RP; Zheng J Eur J Cancer Prev; 2009 Aug; 18(4):331-41. PubMed ID: 19444125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]