BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 28095751)

  • 1.
    Farhang N; Brunger JM; Stover JD; Thakore PI; Lawrence B; Guilak F; Gersbach CA; Setton LA; Bowles RD
    Tissue Eng Part A; 2017 Aug; 23(15-16):738-749. PubMed ID: 28095751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lentiviral CRISPR Epigenome Editing of Inflammatory Receptors as a Gene Therapy Strategy for Disc Degeneration.
    Farhang N; Ginley-Hidinger M; Berrett KC; Gertz J; Lawrence B; Bowles RD
    Hum Gene Ther; 2019 Sep; 30(9):1161-1175. PubMed ID: 31140325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex Epigenome Editing of Dorsal Root Ganglion Neuron Receptors Abolishes Redundant Interleukin 6, Tumor Necrosis Factor Alpha, and Interleukin 1β Signaling by the Degenerative Intervertebral Disc.
    Stover JD; Farhang N; Lawrence B; Bowles RD
    Hum Gene Ther; 2019 Sep; 30(9):1147-1160. PubMed ID: 31056946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoring the IL-1β/NF-κB-induced impaired chondrogenesis by diallyl disulfide in human adipose-derived mesenchymal stem cells via attenuation of reactive oxygen species and elevation of antioxidant enzymes.
    Bahrampour Juybari K; Kamarul T; Najafi M; Jafari D; Sharifi AM
    Cell Tissue Res; 2018 Aug; 373(2):407-419. PubMed ID: 29582166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues.
    Brunger JM; Zutshi A; Willard VP; Gersbach CA; Guilak F
    Arthritis Rheumatol; 2017 May; 69(5):1111-1121. PubMed ID: 27813286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex gene editing to promote cell survival using low-pH clustered regularly interspaced short palindromic repeats activation (CRISPRa) gene perturbation.
    Levis H; Weston J; Austin B; Larsen B; Ginley-Hidinger M; Gullbrand SE; Lawrence B; Bowles RD
    Cytotherapy; 2023 Oct; 25(10):1069-1079. PubMed ID: 37245150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic CRISPRa-Regulated Chondrogenic Extracellular Matrix Deposition Without Exogenous Growth Factors.
    Farhang N; Davis B; Weston J; Ginley-Hidinger M; Gertz J; Bowles RD
    Tissue Eng Part A; 2020 Nov; 26(21-22):1169-1179. PubMed ID: 32460686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1ß, and TNF-α, and the TLR4/TLR2/NF-κB/STAT3 signaling pathway induced by lipopolysaccharide in human adipose stem cells.
    Wu J; Niu P; Zhao Y; Cheng Y; Chen W; Lin L; Lu J; Cheng X; Xu Z
    PLoS One; 2019; 14(2):e0212063. PubMed ID: 30807577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of discoidin domain receptor 1 expression enhances the chondrogenesis of adipose-derived stem cells.
    Wu SC; Hsiao HF; Ho ML; Hung YL; Chang JK; Wang GJ; Wang CZ
    Am J Physiol Cell Physiol; 2015 May; 308(9):C685-96. PubMed ID: 25673773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI; D'Ippolito AM; Song L; Safi A; Shivakumar NK; Kabadi AM; Reddy TE; Crawford GE; Gersbach CA
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Cartilage from Human Chondrocytes with Homozygous Knockout of Cell Cycle Inhibitor p21.
    D'Costa S; Rich MJ; Diekman BO
    Tissue Eng Part A; 2020 Apr; 26(7-8):441-449. PubMed ID: 31642391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges.
    Pei WD; Zhang Y; Yin TL; Yu Y
    Brief Funct Genomics; 2020 May; 19(3):215-228. PubMed ID: 31819946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation.
    Stover JD; Farhang N; Berrett KC; Gertz J; Lawrence B; Bowles RD
    Mol Ther; 2017 Sep; 25(9):2014-2027. PubMed ID: 28676344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic immunomodulation with a CRISPR super-repressor in vivo.
    Moghadam F; LeGraw R; Velazquez JJ; Yeo NC; Xu C; Park J; Chavez A; Ebrahimkhani MR; Kiani S
    Nat Cell Biol; 2020 Sep; 22(9):1143-1154. PubMed ID: 32884147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronan size alters chondrogenesis of adipose-derived stem cells via the CD44/ERK/SOX-9 pathway.
    Wu SC; Chen CH; Wang JY; Lin YS; Chang JK; Ho ML
    Acta Biomater; 2018 Jan; 66():224-237. PubMed ID: 29128538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination.
    Peng H; Le C; Wu J; Li XF; Zhang H; Le XC
    ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic applications of CRISPR RNA-guided genome editing.
    Koo T; Kim JS
    Brief Funct Genomics; 2017 Jan; 16(1):38-45. PubMed ID: 27562951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.
    Moreno AM; Fu X; Zhu J; Katrekar D; Shih YV; Marlett J; Cabotaje J; Tat J; Naughton J; Lisowski L; Varghese S; Zhang K; Mali P
    Mol Ther; 2018 Jul; 26(7):1818-1827. PubMed ID: 29754775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. To CRISPR and beyond: the evolution of genome editing in stem cells.
    Chen KY; Knoepfler PS
    Regen Med; 2016 Dec; 11(8):801-816. PubMed ID: 27905217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.