BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 28095751)

  • 21. CRISPR-Mediated Epigenome Editing.
    Enríquez P
    Yale J Biol Med; 2016 Dec; 89(4):471-486. PubMed ID: 28018139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of lentiviral transduction parameters and its application for CRISPR-based secretome modification of human endometrial mesenchymal stem cells.
    Deryabin P; Griukova A; Shatrova A; Petukhov A; Nikolsky N; Borodkina A
    Cell Cycle; 2019; 18(6-7):742-758. PubMed ID: 30880567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression.
    Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K
    Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional self-assembled peptide scaffold inhibits tumor necrosis factor-alpha-induced inflammation and apoptosis in nucleus pulposus cells by suppressing nuclear factor-κB signaling.
    Li X; Cheng S; Wu Y; Ying J; Wang C; Wen T; Bai X; Ji W; Wang D; Ruan D
    J Biomed Mater Res A; 2018 Apr; 106(4):1082-1091. PubMed ID: 29164771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells.
    Nakamura M; Srinivasan P; Chavez M; Carter MA; Dominguez AA; La Russa M; Lau MB; Abbott TR; Xu X; Zhao D; Gao Y; Kipniss NH; Smolke CD; Bondy-Denomy J; Qi LS
    Nat Commun; 2019 Jan; 10(1):194. PubMed ID: 30643127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research.
    Li Y; Song YH; Liu B; Yu XY
    Int J Cardiol; 2017 Jan; 227():191-193. PubMed ID: 27847153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity.
    Yang MG; West AE
    Yale J Biol Med; 2016 Dec; 89(4):457-470. PubMed ID: 28018138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inflammatory Regulation by TNF-α-Activated Adipose-Derived Stem Cells in the Human Bladder Cancer Microenvironment.
    Ting HK; Chen CL; Meng E; Cherng JH; Chang SJ; Kao CC; Yang MH; Leung FS; Wu ST
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33924332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing: the road of CRISPR/Cas9 from bench to clinic.
    Eid A; Mahfouz MM
    Exp Mol Med; 2016 Oct; 48(10):e265. PubMed ID: 27741224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineered CRISPR Systems for Next Generation Gene Therapies.
    Pineda M; Moghadam F; Ebrahimkhani MR; Kiani S
    ACS Synth Biol; 2017 Sep; 6(9):1614-1626. PubMed ID: 28558198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in therapeutic CRISPR/Cas9 genome editing.
    Savić N; Schwank G
    Transl Res; 2016 Feb; 168():15-21. PubMed ID: 26470680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro.
    Lappas M; Yee K; Permezel M; Rice GE
    Endocrinology; 2005 Mar; 146(3):1491-7. PubMed ID: 15564333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SIRT1 expression is refractory to hypoxia and inflammatory cytokines in nucleus pulposus cells: Novel regulation by HIF-1α and NF-κB signaling.
    Wang X; Li H; Xu K; Zhu H; Peng Y; Liang A; Li C; Huang D; Ye W
    Cell Biol Int; 2016 Jun; 40(6):716-26. PubMed ID: 27061137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion.
    Woolley DE; Tetlow LC
    Arthritis Res; 2000; 2(1):65-74. PubMed ID: 11219391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators.
    Chakraborty C; Teoh SL; Das S
    Curr Drug Targets; 2017; 18(14):1653-1663. PubMed ID: 27231109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.