These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28096076)

  • 21. Drug Intervention Response Predictions with PARADIGM (DIRPP) identifies drug resistant cancer cell lines and pathway mechanisms of resistance.
    Brubaker D; Difeo A; Chen Y; Pearl T; Zhai K; Bebek G; Chance M; Barnholtz-Sloan J
    Pac Symp Biocomput; 2014; ():125-35. PubMed ID: 24297540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using pooled miR30-shRNA library for cancer lethal and synthetic lethal screens.
    Lee LC; Gao S; Li Q; Luo J
    Methods Mol Biol; 2014; 1176():45-58. PubMed ID: 25030918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Somatic pharmacogenomics in cancer.
    Ikediobi ON
    Pharmacogenomics J; 2008 Oct; 8(5):305-14. PubMed ID: 18679398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic prediction of drug resistance caused by transporter genes in cancer cells.
    Shen Y; Yan Z
    Sci Rep; 2021 Apr; 11(1):7400. PubMed ID: 33795761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies.
    Hartmaier RJ; Charo J; Fabrizio D; Goldberg ME; Albacker LA; Pao W; Chmielecki J
    Genome Med; 2017 Feb; 9(1):16. PubMed ID: 28231819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General approach to identifying potential targets for cancer imaging by integrated bioinformatics analysis of publicly available genomic profiles.
    Yang Y; Adelstein SJ; Kassis AI
    Mol Imaging; 2011 Apr; 10(2):123-34. PubMed ID: 21439257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.
    Verkhivker GM
    Pac Symp Biocomput; 2016; 21():45-56. PubMed ID: 26776172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterizing genomic alterations in cancer by complementary functional associations.
    Kim JW; Botvinnik OB; Abudayyeh O; Birger C; Rosenbluh J; Shrestha Y; Abazeed ME; Hammerman PS; DiCara D; Konieczkowski DJ; Johannessen CM; Liberzon A; Alizad-Rahvar AR; Alexe G; Aguirre A; Ghandi M; Greulich H; Vazquez F; Weir BA; Van Allen EM; Tsherniak A; Shao DD; Zack TI; Noble M; Getz G; Beroukhim R; Garraway LA; Ardakani M; Romualdi C; Sales G; Barbie DA; Boehm JS; Hahn WC; Mesirov JP; Tamayo P
    Nat Biotechnol; 2016 May; 34(5):539-46. PubMed ID: 27088724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ranking novel cancer driving synthetic lethal gene pairs using TCGA data.
    Ye H; Zhang X; Chen Y; Liu Q; Wei J
    Oncotarget; 2016 Aug; 7(34):55352-55367. PubMed ID: 27438146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explainable drug sensitivity prediction through cancer pathway enrichment.
    Tang YC; Gottlieb A
    Sci Rep; 2021 Feb; 11(1):3128. PubMed ID: 33542382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. OncoBinder facilitates interpretation of proteomic interaction data by capturing coactivation pairs in cancer.
    Van Coillie S; Liang L; Zhang Y; Wang H; Fang JY; Xu J
    Oncotarget; 2016 Apr; 7(14):17608-15. PubMed ID: 26872056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacogenetics and pharmacogenomics as new tools to optimise cancer chemotherapy.
    Robert J
    J Chemother; 2004 Nov; 16 Suppl 4():22-4. PubMed ID: 15688604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival.
    Megchelenbrink W; Katzir R; Lu X; Ruppin E; Notebaart RA
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12217-22. PubMed ID: 26371301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer.
    Danesi R; de Braud F; Fogli S; de Pas TM; Di Paolo A; Curigliano G; Del Tacca M
    Pharmacol Rev; 2003 Mar; 55(1):57-103. PubMed ID: 12615954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MethCNA: a database for integrating genomic and epigenomic data in human cancer.
    Deng G; Yang J; Zhang Q; Xiao ZX; Cai H
    BMC Genomics; 2018 Feb; 19(1):138. PubMed ID: 29433427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis.
    Cha S; Lee J; Shin JY; Kim JY; Sim SH; Keam B; Kim TM; Kim DW; Heo DS; Lee SH; Kim JI
    BMC Cancer; 2016 Feb; 16():170. PubMed ID: 26925973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of synthetic lethal pairs in biological systems through network information centrality.
    Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2013 Aug; 9(8):2163-7. PubMed ID: 23728082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity.
    Pavel AB; Sonkin D; Reddy A
    BMC Syst Biol; 2016 Feb; 10():16. PubMed ID: 26864072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DISIS: prediction of drug response through an iterative sure independence screening.
    Fang Y; Qin Y; Zhang N; Wang J; Wang H; Zheng X
    PLoS One; 2015; 10(3):e0120408. PubMed ID: 25794193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.