BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 28096194)

  • 1. Autologous Cell Therapy for Peripheral Arterial Disease: Systematic Review and Meta-Analysis of Randomized, Nonrandomized, and Noncontrolled Studies.
    Rigato M; Monami M; Fadini GP
    Circ Res; 2017 Apr; 120(8):1326-1340. PubMed ID: 28096194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone Marrow derived Cell Therapy in Critical Limb Ischemia: A Meta-analysis of Randomized Placebo Controlled Trials.
    Peeters Weem SM; Teraa M; de Borst GJ; Verhaar MC; Moll FL
    Eur J Vasc Endovasc Surg; 2015 Dec; 50(6):775-83. PubMed ID: 26460286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials.
    Gao W; Chen D; Liu G; Ran X
    Stem Cell Res Ther; 2019 May; 10(1):140. PubMed ID: 31113463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autologous bone marrow mononuclear cell implantation therapy is an effective limb salvage strategy for patients with severe peripheral arterial disease.
    Franz RW; Shah KJ; Pin RH; Hankins T; Hartman JF; Wright ML
    J Vasc Surg; 2015 Sep; 62(3):673-80. PubMed ID: 26304481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic value of the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification in patients with no-option chronic limb-threatening ischemia.
    van Haelst STW; Teraa M; Moll FL; de Borst GJ; Verhaar MC; Conte MS
    J Vasc Surg; 2018 Oct; 68(4):1104-1113.e1. PubMed ID: 29802042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia.
    Kinoshita M; Fujita Y; Katayama M; Baba R; Shibakawa M; Yoshikawa K; Katakami N; Furukawa Y; Tsukie T; Nagano T; Kurimoto Y; Yamasaki K; Handa N; Okada Y; Kuronaka K; Nagata Y; Matsubara Y; Fukushima M; Asahara T; Kawamoto A
    Atherosclerosis; 2012 Oct; 224(2):440-5. PubMed ID: 22877866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autologous cells derived from different sources and administered using different regimens for 'no-option' critical lower limb ischaemia patients.
    Abdul Wahid SF; Ismail NA; Wan Jamaludin WF; Muhamad NA; Abdul Hamid MKA; Harunarashid H; Lai NM
    Cochrane Database Syst Rev; 2018 Aug; 8(8):CD010747. PubMed ID: 30155883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous Bone Marrow-Derived Stem Cells in Patients with Severe Peripheral Arterial Disease.
    Sharma S; Pandey NN; Sinha M; Kumar S; Jagia P; Gulati GS; Gond K; Mohanty S; Bhargava B
    J Vasc Interv Radiol; 2021 Feb; 32(2):157-163. PubMed ID: 33248918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial.
    Teraa M; Sprengers RW; Schutgens RE; Slaper-Cortenbach IC; van der Graaf Y; Algra A; van der Tweel I; Doevendans PA; Mali WP; Moll FL; Verhaar MC
    Circulation; 2015 Mar; 131(10):851-60. PubMed ID: 25567765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationale and design of the MarrowStim PAD Kit for the Treatment of Critical Limb Ischemia in Subjects with Severe Peripheral Arterial Disease (MOBILE) trial investigating autologous bone marrow cell therapy for critical limb ischemia.
    Wang SK; Green LA; Motaganahalli RL; Wilson MG; Fajardo A; Murphy MP
    J Vasc Surg; 2017 Jun; 65(6):1850-1857.e2. PubMed ID: 28390770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethnic minorities with critical limb ischemia derive equal amputation risk reduction from autologous cell therapy compared with whites.
    Wang SK; Green LA; Gutwein AR; Drucker NA; Babbey CM; Gupta AK; Fajardo A; Motaganahalli RL; Wilson MG; Murphy MP
    J Vasc Surg; 2018 Aug; 68(2):560-566. PubMed ID: 29503004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical outcomes of bypass-first versus endovascular-first strategy in patients with chronic limb-threatening ischemia due to infrageniculate arterial disease.
    Dayama A; Tsilimparis N; Kolakowski S; Matolo NM; Humphries MD
    J Vasc Surg; 2019 Jan; 69(1):156-163.e1. PubMed ID: 30579443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive factors for better bypass patency and limb salvage after prosthetic above-knee bypass reconstruction.
    Klingelhoefer E; Bergert H; Kersting S; Ludwig S; Weiss N; Schönleben F; Grützmann R; Gäbel G
    J Vasc Surg; 2016 Aug; 64(2):380-388.e1. PubMed ID: 27763266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease.
    Franz RW; Parks A; Shah KJ; Hankins T; Hartman JF; Wright ML
    J Vasc Surg; 2009 Dec; 50(6):1378-90. PubMed ID: 19837539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic review and meta-analysis of revascularization outcomes of infrainguinal chronic limb-threatening ischemia.
    Almasri J; Adusumalli J; Asi N; Lakis S; Alsawas M; Prokop LJ; Bradbury A; Kolh P; Conte MS; Murad MH
    J Vasc Surg; 2018 Aug; 68(2):624-633. PubMed ID: 29804736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetes does not worsen outcomes following infrageniculate bypass or endovascular intervention for patients with critical limb ischemia.
    Hicks CW; Najafian A; Farber A; Menard MT; Malas MB; Black JH; Abularrage CJ
    J Vasc Surg; 2016 Dec; 64(6):1667-1674.e1. PubMed ID: 27871493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia.
    Losordo DW; Kibbe MR; Mendelsohn F; Marston W; Driver VR; Sharafuddin M; Teodorescu V; Wiechmann BN; Thompson C; Kraiss L; Carman T; Dohad S; Huang P; Junge CE; Story K; Weistroffer T; Thorne TM; Millay M; Runyon JP; Schainfeld R;
    Circ Cardiovasc Interv; 2012 Dec; 5(6):821-30. PubMed ID: 23192920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia.
    Powell RJ; Comerota AJ; Berceli SA; Guzman R; Henry TD; Tzeng E; Velazquez O; Marston WA; Bartel RL; Longcore A; Stern T; Watling S
    J Vasc Surg; 2011 Oct; 54(4):1032-41. PubMed ID: 21684715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of angiosome- and nonangiosome-targeted peroneal bypass on limb salvage and healing in patients with chronic limb-threatening ischemia.
    Ricco JB; Gargiulo M; Stella A; Abualhin M; Gallitto E; Desvergnes M; Belmonte R; Schneider F
    J Vasc Surg; 2017 Nov; 66(5):1479-1487. PubMed ID: 28756043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of wound healing time and wound-free period as outcomes after surgical and endovascular revascularization for critical lower limb ischemia.
    Okazaki J; Matsuda D; Tanaka K; Ishida M; Kuma S; Morisaki K; Furuyama T; Maehara Y
    J Vasc Surg; 2018 Mar; 67(3):817-825. PubMed ID: 29032905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.