These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28096453)

  • 1. Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
    Oi H; Fujita D; Suzuki Y; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biochem; 2017 May; 161(5):451-462. PubMed ID: 28096453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA-RNA interface between two structural modules.
    Tsuruga R; Uehara N; Suzuki Y; Furuta H; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2019 Oct; 128(4):410-415. PubMed ID: 31109874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme.
    Tanaka T; Furuta H; Ikawa Y
    J Biosci Bioeng; 2014 Apr; 117(4):407-12. PubMed ID: 24216461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hexameric Ribozyme Nanostructure Formed by Double-Decker Assembly of a Pair of Triangular Ribozyme Trimers.
    Yu K; Hidaka K; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    Chembiochem; 2022 Mar; 23(6):e202100573. PubMed ID: 35088928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Assembly of Engineered Tetrahymena Ribozymes Forming Polygonal RNA Nanostructures with Catalytic Ability.
    Mori Y; Oi H; Suzuki Y; Hidaka K; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    Chembiochem; 2021 Jun; 22(12):2168-2176. PubMed ID: 33876531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic RNA nano-objects formed by self-assembly of group I ribozyme dimers serving as unit structures.
    Kiyooka R; Akagi J; Hidaka K; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2020 Sep; 130(3):253-259. PubMed ID: 32451246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogenic triamine and tetraamine activate core catalytic ability of Tetrahymena group I ribozyme in the absence of its large activator module.
    Gulshan MA; Rahman MM; Matsumura S; Higuchi T; Umezawa N; Ikawa Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):594-600. PubMed ID: 29339152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic RNA Oligomers Formed by Co-Oligomerization of a Pair of Bimolecular RNase P Ribozymes.
    Siddika MA; Yamada T; Aoyama R; Hidaka K; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Engineering of a Modular Group I Ribozyme to Control Its Activity by Self-Dimerization.
    Tanaka T; Ikawa Y; Matsumura S
    Methods Mol Biol; 2017; 1632():325-340. PubMed ID: 28730449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers.
    Islam MD; Hidaka K; Suzuki Y; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2022 Sep; 134(3):195-202. PubMed ID: 35810135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tecto-GIRz: Engineered Group I Ribozyme the Catalytic Ability of Which Can Be Controlled by Self-Dimerization.
    Tanaka T; Matsumura S; Furuta H; Ikawa Y
    Chembiochem; 2016 Aug; 17(15):1448-55. PubMed ID: 27247120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
    Russell R; Tijerina P; Chadee AB; Bhaskaran H
    Biochemistry; 2007 May; 46(17):4951-61. PubMed ID: 17419589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the newly constructed domains that replace P5abc within the Tetrahymena ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 1996 Sep; 394(1):5-8. PubMed ID: 8925926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial RNA Motifs Expand the Programmable Assembly between RNA Modules of a Bimolecular Ribozyme Leading to Application to RNA Nanostructure Design.
    Rahman MM; Matsumura S; Ikawa Y
    Biology (Basel); 2017 Oct; 6(4):. PubMed ID: 29084145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA Structural Modules Control the Rate and Pathway of RNA Folding and Assembly.
    Gracia B; Xue Y; Bisaria N; Herschlag D; Al-Hashimi HM; Russell R
    J Mol Biol; 2016 Oct; 428(20):3972-3985. PubMed ID: 27452365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chain length of polyethylene glycol molecular crowders on a mutant
    Dobirul Islam M; Motiar Rahman M; Matsumura S; Ikawa Y
    Nucleosides Nucleotides Nucleic Acids; 2021; 40(9):867-883. PubMed ID: 34402751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ligase ribozyme obtained from a structured pool.
    Yoshioka W; Ikawa Y; Jaeger L; Inoue T
    Nucleic Acids Symp Ser (Oxf); 2004; (48):209-10. PubMed ID: 17150552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of an exceptionally stable RNA tertiary interface in a group I ribozyme.
    Doherty EA; Herschlag D; Doudna JA
    Biochemistry; 1999 Mar; 38(10):2982-90. PubMed ID: 10074350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and function of catalytic RNAs.
    Wu Q; Huang L; Zhang Y
    Sci China C Life Sci; 2009 Mar; 52(3):232-44. PubMed ID: 19294348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating the splicing activity of Tetrahymena ribozyme via RNA self-assembly.
    Hasegawa S; Rao J
    FEBS Lett; 2006 Mar; 580(6):1592-6. PubMed ID: 16472807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.