BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28096497)

  • 1. BDNF regains function in hippocampal long-term potentiation deficits caused by diencephalic damage.
    Vedder LC; Savage LM
    Learn Mem; 2017 Feb; 24(2):81-85. PubMed ID: 28096497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diencephalic damage decreases hippocampal acetylcholine release during spontaneous alternation testing.
    Savage LM; Chang Q; Gold PE
    Learn Mem; 2003; 10(4):242-6. PubMed ID: 12888541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter.
    Langlais PJ; Savage LM
    Behav Brain Res; 1995 Apr; 68(1):75-89. PubMed ID: 7619308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity.
    Xie H; Leung KL; Chen L; Chan YS; Ng PC; Fok TF; Wing YK; Ke Y; Li AM; Yung WH
    Neurobiol Dis; 2010 Oct; 40(1):155-62. PubMed ID: 20553872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonism of glutamate receptors in the CA1 to perirhinal cortex projection prevents long-term potentiation and attenuates levels of brain-derived neurotrophic factor.
    Kealy J; Commins S
    Brain Res; 2009 Apr; 1265():53-64. PubMed ID: 19232328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain endothelial dysfunction following pyrithiamine induced thiamine deficiency in the rat.
    Sarkar S; Liachenko S; Paule MG; Bowyer J; Hanig JP
    Neurotoxicology; 2016 Dec; 57():298-309. PubMed ID: 27984051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early pre-pathological lesion stage.
    Zhao N; Zhong C; Wang Y; Zhao Y; Gong N; Zhou G; Xu T; Hong Z
    Neurobiol Dis; 2008 Feb; 29(2):176-85. PubMed ID: 17936635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent changes in synaptic plasticity and brain-derived neurotrophic factor (BDNF) expression in the CA1 to perirhinal cortex projection.
    Kealy J; Commins S
    Brain Res; 2010 Apr; 1326():51-61. PubMed ID: 20193668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism.
    Bozdagi O; Rich E; Tronel S; Sadahiro M; Patterson K; Shapiro ML; Alberini CM; Huntley GW; Salton SR
    J Neurosci; 2008 Sep; 28(39):9857-69. PubMed ID: 18815270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deleterious effects of prenatal exposure to morphine on the spatial learning and hippocampal BDNF and long-term potentiation in juvenile rats: Beneficial influences of postnatal treadmill exercise and enriched environment.
    Ahmadalipour A; Ghodrati-Jaldbakhan S; Samaei SA; Rashidy-Pour A
    Neurobiol Learn Mem; 2018 Jan; 147():54-64. PubMed ID: 29175674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxysafflor yellow A increases BDNF and NMDARs in the hippocampus in a vascular dementia rat model.
    Xing M; Sun Q; Wang Y; Cheng Y; Zhang N
    Brain Res; 2016 Jul; 1642():419-425. PubMed ID: 27086971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise leads to the re-emergence of the cholinergic/nestin neuronal phenotype within the medial septum/diagonal band and subsequent rescue of both hippocampal ACh efflux and spatial behavior.
    Hall JM; Savage LM
    Exp Neurol; 2016 Apr; 278():62-75. PubMed ID: 26836322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memory for reward location is enhanced even though acetylcholine efflux within the amygdala is impaired in rats with damage to the diencephalon produced by thiamine deficiency.
    Savage LM; Guarino S
    Neurobiol Learn Mem; 2010 Nov; 94(4):554-60. PubMed ID: 20854918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Danggui-Jakyak-San enhances hippocampal long-term potentiation through the ERK/CREB/BDNF cascade.
    Yi JH; Hye Jin Park ; Beak SJ; Lee S; Jung JW; Kim BC; Ryu JH; Kim DH
    J Ethnopharmacol; 2015 Dec; 175():481-9. PubMed ID: 26453932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult.
    Pitkin SR; Savage LM
    Behav Brain Res; 2004 Jan; 148(1-2):93-105. PubMed ID: 14684251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia.
    Zhang N; Xing M; Wang Y; Tao H; Cheng Y
    Neuroscience; 2015 Dec; 311():284-91. PubMed ID: 26518460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BDNF protects against stress-induced impairments in spatial learning and memory and LTP.
    Radecki DT; Brown LM; Martinez J; Teyler TJ
    Hippocampus; 2005; 15(2):246-53. PubMed ID: 15476265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired long-term memory and long-term potentiation in N-type Ca2+ channel-deficient mice.
    Jeon D; Kim C; Yang YM; Rhim H; Yim E; Oh U; Shin HS
    Genes Brain Behav; 2007 Jun; 6(4):375-88. PubMed ID: 16939638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats.
    Oomura Y; Hori N; Shiraishi T; Fukunaga K; Takeda H; Tsuji M; Matsumiya T; Ishibashi M; Aou S; Li XL; Kohno D; Uramura K; Sougawa H; Yada T; Wayner MJ; Sasaki K
    Peptides; 2006 Nov; 27(11):2738-49. PubMed ID: 16914228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation.
    Liu HL; Zhao G; Cai K; Zhao HH; Shi LD
    Behav Brain Res; 2011 Apr; 218(2):308-14. PubMed ID: 21192984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.