These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 2809706)

  • 1. Influence of central set on human postural responses.
    Horak FB; Diener HC; Nashner LM
    J Neurophysiol; 1989 Oct; 62(4):841-53. PubMed ID: 2809706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebellar control of postural scaling and central set in stance.
    Horak FB; Diener HC
    J Neurophysiol; 1994 Aug; 72(2):479-93. PubMed ID: 7983513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone.
    Horak FB; Frank J; Nutt J
    J Neurophysiol; 1996 Jun; 75(6):2380-96. PubMed ID: 8793751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of stimulus parameters on human postural responses.
    Diener HC; Horak FB; Nashner LM
    J Neurophysiol; 1988 Jun; 59(6):1888-905. PubMed ID: 3404210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is lower leg proprioception essential for triggering human automatic postural responses?
    Bloem BR; Allum JH; Carpenter MG; Honegger F
    Exp Brain Res; 2000 Feb; 130(3):375-91. PubMed ID: 10706436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central programming of postural movements: adaptation to altered support-surface configurations.
    Horak FB; Nashner LM
    J Neurophysiol; 1986 Jun; 55(6):1369-81. PubMed ID: 3734861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular influences on human postural control in combinations of pitch and roll planes reveal differences in spatiotemporal processing.
    Carpenter MG; Allum JH; Honegger F
    Exp Brain Res; 2001 Sep; 140(1):95-111. PubMed ID: 11500802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man.
    Allum JH; Carpenter MG; Honegger F; Adkin AL; Bloem BR
    J Physiol; 2002 Jul; 542(Pt 2):643-63. PubMed ID: 12122159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vestibular and proprioceptive modulation of postural synergies in normal subjects.
    Allum JH; Honegger F; Schicks H
    J Vestib Res; 1993; 3(1):59-85. PubMed ID: 8275244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of instruction, prediction, and afferent sensory information on the postural organization of step initiation.
    Burleigh A; Horak F
    J Neurophysiol; 1996 Apr; 75(4):1619-28. PubMed ID: 8727400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional sensitivity of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes.
    Carpenter MG; Allum JH; Honegger F
    Exp Brain Res; 1999 Nov; 129(1):93-113. PubMed ID: 10550507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of a bilateral peripheral vestibular deficit on postural synergies.
    Allum JH; Honegger F; Schicks H
    J Vestib Res; 1994; 4(1):49-70. PubMed ID: 8186863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of central set on anticipatory and triggered grip-force adjustments.
    Winstein CJ; Horak FB; Fisher BE
    Exp Brain Res; 2000 Feb; 130(3):298-308. PubMed ID: 10706429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of leg muscles in humans displaced while standing. Effects of types of perturbation and of postural set.
    Nardone A; Giordano A; CorrĂ  T; Schieppati M
    Brain; 1990 Feb; 113 ( Pt 1)():65-84. PubMed ID: 2302538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of set in muscle responses to limb perturbations during cerebellar dysfunction.
    Hore J; Vilis T
    J Neurophysiol; 1984 Jun; 51(6):1137-48. PubMed ID: 6737025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and set-dependent scaling of early postural responses in cerebellar patients.
    Timmann D; Horak FB
    Brain; 1997 Feb; 120 ( Pt 2)():327-37. PubMed ID: 9117379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deceleration affects anticipatory and reactive components of triggered postural responses.
    Carpenter MG; Thorstensson A; Cresswell AG
    Exp Brain Res; 2005 Dec; 167(3):433-45. PubMed ID: 16041500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of somatosensory information in triggering and scaling automatic postural responses in humans.
    Inglis JT; Horak FB; Shupert CL; Jones-Rycewicz C
    Exp Brain Res; 1994; 101(1):159-64. PubMed ID: 7843295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long latency postural responses are functionally modified by cognitive set.
    Beckley DJ; Bloem BR; Remler MP; Roos RA; Van Dijk JG
    Electroencephalogr Clin Neurophysiol; 1991 Oct; 81(5):353-8. PubMed ID: 1718721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.