BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28097687)

  • 1. Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study.
    Tweten DJ; Okamoto RJ; Bayly PV
    Magn Reson Med; 2017 Dec; 78(6):2360-2372. PubMed ID: 28097687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material.
    Tweten DJ; Okamoto RJ; Schmidt JL; Garbow JR; Bayly PV
    J Biomech; 2015 Nov; 48(15):4002-4009. PubMed ID: 26476762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography.
    Schmidt JL; Tweten DJ; Badachhape AA; Reiter AJ; Okamoto RJ; Garbow JR; Bayly PV
    J Mech Behav Biomed Mater; 2018 Mar; 79():30-37. PubMed ID: 29253729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue.
    Schmidt JL; Tweten DJ; Benegal AN; Walker CH; Portnoi TE; Okamoto RJ; Garbow JR; Bayly PV
    J Biomech; 2016 May; 49(7):1042-1049. PubMed ID: 26920505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Anisotropic Material Properties of Soft Tissue by MRI of Ultrasound-Induced Shear Waves.
    Guertler CA; Okamoto RJ; Ireland JA; Pacia CP; Garbow JR; Chen H; Bayly PV
    J Biomech Eng; 2020 Mar; 142(3):0310011-03100117. PubMed ID: 31980814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography.
    McGarry M; Houten EV; Guertler C; Okamoto R; Smith D; Sowinski D; Johnson C; Bayly P; Weaver J; Paulsen K
    Phys Med Biol; 2021 Feb; 66(5):. PubMed ID: 32512548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear Wave Propagation and Estimation of Material Parameters in a Nonlinear, Fibrous Material.
    Hou Z; Okamoto RJ; Bayly PV
    J Biomech Eng; 2020 May; 142(5):0510101-05101010. PubMed ID: 31513702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Excitation Magnetic Resonance Elastography of the Brain: Wave Propagation in Anisotropic White Matter.
    Smith DR; Guertler CA; Okamoto RJ; Romano AJ; Bayly PV; Johnson CL
    J Biomech Eng; 2020 Jul; 142(7):0710051-9. PubMed ID: 32006012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative identifiability of anisotropic properties from magnetic resonance elastography.
    Miller R; Kolipaka A; Nash MP; Young AA
    NMR Biomed; 2018 Oct; 31(10):e3848. PubMed ID: 29106765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the mechanical properties of a transversely isotropic material from shear wave fields via artificial neural networks.
    Hou Z; Guertler CA; Okamoto RJ; Chen H; Garbow JR; Kamilov US; Bayly PV
    J Mech Behav Biomed Mater; 2022 Feb; 126():105046. PubMed ID: 34953435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirements for accurate estimation of shear modulus by magnetic resonance elastography: A computational comparative study.
    Hu L
    Comput Methods Programs Biomed; 2020 Aug; 192():105437. PubMed ID: 32182441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tractable calculation of the Green's tensor for shear wave propagation in an incompressible, transversely isotropic material.
    Rouze NC; Palmeri ML; Nightingale KR
    Phys Med Biol; 2020 Jan; 65(1):015014. PubMed ID: 31775132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver.
    Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G
    Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of viscoelastic media by local frequency estimation of divergence-free wave fields.
    Clayton EH; Okamoto RJ; Bayly PV
    J Biomech Eng; 2013 Feb; 135(2):021025. PubMed ID: 23445070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.
    Rouze NC; Wang MH; Palmeri ML; Nightingale KR
    J Biomech; 2013 Nov; 46(16):2761-8. PubMed ID: 24094454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Smith DR; Caban-Rivera DA; Williams LT; Van Houten EEW; Bayly PV; Paulsen KD; McGarry MDJ; Johnson CL
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36652716
    [No Abstract]   [Full Text] [Related]  

  • 19. Evaluation of wave delivery methodology for brain MRE: Insights from computational simulations.
    McGrath DM; Ravikumar N; Beltrachini L; Wilkinson ID; Frangi AF; Taylor ZA
    Magn Reson Med; 2017 Jul; 78(1):341-356. PubMed ID: 27416890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping heterogenous anisotropic tissue mechanical properties with transverse isotropic nonlinear inversion MR elastography.
    McGarry M; Van Houten E; Sowinski D; Jyoti D; Smith DR; Caban-Rivera DA; McIlvain G; Bayly P; Johnson CL; Weaver J; Paulsen K
    Med Image Anal; 2022 May; 78():102432. PubMed ID: 35358836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.