These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28097753)

  • 21. N-H bond activation in ammonia by TM-SSZ-13 (Fe, Co, Ni and Cu) zeolites: a first-principles calculation.
    Wang L; Chen H; Wang W
    Phys Chem Chem Phys; 2019 Jan; 21(3):1506-1513. PubMed ID: 30608503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.
    Beale AM; Gao F; Lezcano-Gonzalez I; Peden CH; Szanyi J
    Chem Soc Rev; 2015 Oct; 44(20):7371-405. PubMed ID: 25913215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH
    Chen P; Rizzotto V; Khetan A; Xie K; Moos R; Pitsch H; Ye D; Simon U
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8097-8105. PubMed ID: 30706712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems.
    Lezcano-Gonzalez I; Deka U; Arstad B; Van Yperen-De Deyne A; Hemelsoet K; Waroquier M; Van Speybroeck V; Weckhuysen BM; Beale AM
    Phys Chem Chem Phys; 2014 Jan; 16(4):1639-50. PubMed ID: 24322601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmentally-benign catalysts for the selective catalytic reduction of NO(x) from diesel engines: structure-activity relationship and reaction mechanism aspects.
    Liu F; Yu Y; He H
    Chem Commun (Camb); 2014 Aug; 50(62):8445-63. PubMed ID: 24819654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coaxial 3D Printing of Zeolite-Based Core-Shell Monolithic Cu-SSZ-13@SiO
    Wei Y; Wang S; Chen M; Han J; Yang G; Wang Q; Di J; Li H; Wu W; Yu J
    Adv Mater; 2024 Apr; 36(17):e2302912. PubMed ID: 37177904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the effects of Cu
    Wang X; Xu Y; Qin M; Zhao Z; Fan X; Li Q
    J Colloid Interface Sci; 2022 Sep; 622():1-10. PubMed ID: 35490612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Widening Synthesis Bottlenecks: Realization of Ultrafast and Continuous-Flow Synthesis of High-Silica Zeolite SSZ-13 for NOx Removal.
    Liu Z; Wakihara T; Oshima K; Nishioka D; Hotta Y; Elangovan SP; Yanaba Y; Yoshikawa T; Chaikittisilp W; Matsuo T; Takewaki T; Okubo T
    Angew Chem Int Ed Engl; 2015 May; 54(19):5683-7. PubMed ID: 25801140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ammonia-Containing Species Formed in Cu-Chabazite As Per In Situ EPR, Solid-State NMR, and DFT Calculations.
    Moreno-González M; Hueso B; Boronat M; Blasco T; Corma A
    J Phys Chem Lett; 2015 Mar; 6(6):1011-7. PubMed ID: 26262861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH
    Guo A; Xie K; Lei H; Rizzotto V; Chen L; Fu M; Chen P; Peng Y; Ye D; Simon U
    Environ Sci Technol; 2021 Sep; 55(18):12619-12629. PubMed ID: 34510889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental benign synthesis of Nano-SSZ-13 via FAU trans-crystallization: Enhanced NH
    Liang J; Mi Y; Song G; Peng H; Li Y; Yan R; Liu W; Wang Z; Wu P; Liu F
    J Hazard Mater; 2020 Nov; 398():122986. PubMed ID: 32502803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx.
    Moliner M; Franch C; Palomares E; Grill M; Corma A
    Chem Commun (Camb); 2012 Aug; 48(66):8264-6. PubMed ID: 22782014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-Pot Synthesis of Ce-SSZ-39 Zeolite with Performance in the NH
    Bian C; Luo X; Chen X; Liu R; Li J; Zhu G; Xu H; Han S; Zhu J; Zhu L
    Inorg Chem; 2024 Jun; 63(23):10798-10808. PubMed ID: 38781309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13.
    Paolucci C; Verma AA; Bates SA; Kispersky VF; Miller JT; Gounder R; Delgass WN; Ribeiro FH; Schneider WF
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11828-33. PubMed ID: 25220217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.
    Shi X; Liu F; Xie L; Shan W; He H
    Environ Sci Technol; 2013 Apr; 47(7):3293-8. PubMed ID: 23477804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of Suitable Templates for One-Pot-Synthesized Cu-SAPO-34 in NO
    Du J; Shi X; Shan Y; Zhang W; Yu Y; Shan W; He H
    Environ Sci Technol; 2020 Jul; 54(13):7870-7878. PubMed ID: 32544321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deactivation of Cu-Exchanged Automotive-Emission NH
    Ye X; Schmidt JE; Wang RP; van Ravenhorst IK; Oord R; Chen T; de Groot F; Meirer F; Weckhuysen BM
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15610-15617. PubMed ID: 32011783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fe-Containing Zeolites for NH
    Martín N; Vennestrøm PNR; Thøgersen JR; Moliner M; Corma A
    Chemistry; 2017 Sep; 23(54):13404-13414. PubMed ID: 28707766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cu-OFF/ERI Zeolite: Intergrowth Structure Synergistically Boosting Selective Catalytic Reduction of NO
    Han J; Li J; Zhao W; Li L; Chen M; Ge X; Wang S; Liu Q; Mei D; Yu J
    J Am Chem Soc; 2024 Mar; 146(11):7605-7615. PubMed ID: 38467427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Appraising Multinuclear Cu
    Iacobone U; Nova I; Tronconi E; Villamaina R; Ruggeri MP; Collier J; Thompsett D
    ChemistryOpen; 2022 Sep; 11(9):e202200186. PubMed ID: 36101494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.