These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28097770)

  • 1. Bond Strength and Reactivity Scales for Lewis Superacid Adducts: A Comparative Study with In(OTf)
    Compain G; Sikk L; Massi L; Gal JF; Duñach E
    Chemphyschem; 2017 Mar; 18(6):683-691. PubMed ID: 28097770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative approach of the interaction between metal triflates and organic ligands using electrospray mass spectrometry.
    Gal JF; Iacobucci C; Monfardini I; Massi L; Duñach E; Olivero S
    J Am Soc Mass Spectrom; 2012 Dec; 23(12):2059-62. PubMed ID: 23055073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon Tetrakis(trifluoromethanesulfonate): A Simple Neutral Silane Acting as a Soft and Hard Lewis Superacid.
    Hermannsdorfer A; Driess M
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13656-13660. PubMed ID: 33826216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical synthetic routes to solvates of U(OTf)3: X-ray crystal structure of [U(OTf)3(MeCN)3]n, a unique U(III) coordination polymer.
    Natrajan L; Mazzanti M; Bezombes JP; Pécaut J
    Inorg Chem; 2005 Aug; 44(17):6115-21. PubMed ID: 16097833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.
    Wang H; Wang H; Kuhn E; Tucker MP; Yang B
    ChemSusChem; 2018 Jan; 11(1):285-291. PubMed ID: 29136337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights on the Lewis Superacid Al(OTeF
    Hoffmann KF; Wiesner A; Steinhauer S; Riedel S
    Chemistry; 2022 Oct; 28(57):e202201958. PubMed ID: 35901430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New cationic and zwitterionic Cp*M(kappa2-P,S) complexes (M = Rh, Ir): divergent reactivity pathways arising from alternative modes of ancillary ligand participation in substrate activation.
    Hesp KD; McDonald R; Ferguson MJ; Stradiotto M
    J Am Chem Soc; 2008 Dec; 130(48):16394-406. PubMed ID: 18986145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bond dissociation energy and Lewis acidity of the xenon fluoride cation.
    Krouse IH; Wenthold PG
    Inorg Chem; 2003 Jul; 42(14):4293-8. PubMed ID: 12844301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gallium(III) triflate: an efficient and a sustainable Lewis acid catalyst for organic synthetic transformations.
    Prakash GK; Mathew T; Olah GA
    Acc Chem Res; 2012 Apr; 45(4):565-77. PubMed ID: 22148160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometric characterization of metal triflates and triflimides (Lewis superacid catalysts) by electrospray ionization and tandem mass spectrometry.
    Monfardini I; Massi L; Tremel P; Hauville A; Olivero S; Duñach E; Gal JF
    Rapid Commun Mass Spectrom; 2010 Sep; 24(17):2611-9. PubMed ID: 20740537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity at the beta-diketiminate ligand Nacnac- on titanium(IV) (Nacnac- = [Ar]NC(CH3)CHC(CH3)N[Ar], Ar = 2,6-[CH(CH3)2]2C6H3). Diimine-alkoxo and bis-anilido ligands stemming from the Nacnac- skeleton.
    Basuli F; Huffman JC; Mindiola DJ
    Inorg Chem; 2003 Dec; 42(24):8003-10. PubMed ID: 14632519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow reactant-water exchange and high catalytic performance of water-tolerant Lewis acids.
    Koito Y; Nakajima K; Kobayashi H; Hasegawa R; Kitano M; Hara M
    Chemistry; 2014 Jun; 20(26):8068-75. PubMed ID: 24861208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-capture dissociation and collision-induced dissociation of lanthanide metal-ligand complexes and lanthanide metal-ligand complexes bound to phosphopeptides.
    Mosely JA; Murray BS; Parker D
    Eur J Mass Spectrom (Chichester); 2009; 15(2):145-55. PubMed ID: 19423900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Acid Strength of the Lewis-Brønsted Superacids - A QSPR Study.
    Sosnowska A; Brzeski J; Skurski P; Puzyn T
    Mol Inform; 2019 Aug; 38(8-9):e1800113. PubMed ID: 30747480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boron-Centered Lewis Superacid through Redox-Active Ligands: Application in C-F and S-F Bond Activation.
    Köring L; Stepen A; Birenheide B; Barth S; Leskov M; Schoch R; Krämer F; Breher F; Paradies J
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202216959. PubMed ID: 36621900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Triflates as Catalysts in Organic Synthesis: Determination of Their Lewis Acidity by Mass Spectrometry.
    Massi L; Gal JF; Duñach E
    Chempluschem; 2022 Jun; 87(6):e202200037. PubMed ID: 35589529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and structure of Pt(II) phosphonato-phosphine complexes and of a P,O-stabilized metal-metal-bonded Pt2Ag2 complex.
    Oberbeckmann-Winter N; Morise X; Braunstein P; Welter R
    Inorg Chem; 2005 Mar; 44(5):1391-403. PubMed ID: 15732979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Ligand Affinity Scales for Metal Triflate Salts: Application to Isomer Differentiation.
    Iacobucci C; Jouini N; Massi L; Olivero S; De Angelis F; Duñach E; Gal JF
    Chempluschem; 2017 Mar; 82(3):498-506. PubMed ID: 31962023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bipyridine complexes of E
    Chitnis SS; Robertson APM; Burford N; Patrick BO; McDonald R; Ferguson MJ
    Chem Sci; 2015 Nov; 6(11):6545-6555. PubMed ID: 30090272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Carbon Dioxide by Silyl Triflate-Based Frustrated Lewis Pairs.
    Weicker SA; Stephan DW
    Chemistry; 2015 Sep; 21(37):13027-34. PubMed ID: 26223404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.