BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 28097931)

  • 1. Oil encapsulation in core-shell alginate capsules by inverse gelation. I: dripping methodology.
    Martins E; Renard D; Adiwijaya Z; Karaoglan E; Poncelet D
    J Microencapsul; 2017 Feb; 34(1):82-90. PubMed ID: 28097931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil encapsulation in core-shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions.
    Martins E; Poncelet D; Rodrigues RC; Renard D
    J Microencapsul; 2017 Sep; 34(6):522-534. PubMed ID: 28792267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil core microcapsules by inverse gelation technique.
    Martins E; Renard D; Davy J; Marquis M; Poncelet D
    J Microencapsul; 2015; 32(1):86-95. PubMed ID: 25413437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.
    Abang S; Chan ES; Poncelet D
    J Microencapsul; 2012; 29(5):417-28. PubMed ID: 22292966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks.
    Martins E; Poncelet D; Rodrigues RC; Renard D
    J Microencapsul; 2017 Dec; 34(8):754-771. PubMed ID: 29161939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate-based emulsion template containing high oil loading stabilized by nonionic surfactants.
    Ong WD; Tey BT; Quek SY; Tang SY; Chan ES
    J Food Sci; 2015 Jan; 80(1):E93-E100. PubMed ID: 25529579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools.
    Rodríguez-Dorado R; Landín M; Altai A; Russo P; Aquino RP; Del Gaudio P
    Int J Pharm; 2018 Mar; 538(1-2):97-104. PubMed ID: 29341917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions.
    Machado AH; Lundberg D; Ribeiro AJ; Veiga FJ; Lindman B; Miguel MG; Olsson U
    Langmuir; 2012 Mar; 28(9):4131-41. PubMed ID: 22296569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of alginate microspheres containing thyme essential oil using ionic gelation.
    Benavides S; Cortés P; Parada J; Franco W
    Food Chem; 2016 Aug; 204():77-83. PubMed ID: 26988478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions.
    Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY
    J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.
    Hosseini SM; Hosseini H; Mohammadifar MA; Mortazavian AM; Mohammadi A; Khosravi-Darani K; Shojaee-Aliabadi S; Dehghan S; Khaksar R
    Int J Biol Macromol; 2013 Nov; 62():582-8. PubMed ID: 24120881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pickering emulsion-templated ionotropic gelation of tocotrienol microcapsules: effects of alginate and chitosan concentrations and gelation process parameters.
    Tan PY; Tan TB; Chang HW; Mwangi WW; Tey BT; Chan ES; Lai OM; Liu Y; Wang Y; Tan CP
    J Sci Food Agric; 2021 Nov; 101(14):5963-5971. PubMed ID: 33840091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell Microencapsulation: Dripping Methods.
    Bidoret A; Martins E; De Smet BP; Poncelet D
    Methods Mol Biol; 2017; 1479():43-55. PubMed ID: 27738925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microencapsulation of canola oil by lentil protein isolate-based wall materials.
    Chang C; Varankovich N; Nickerson MT
    Food Chem; 2016 Dec; 212():264-73. PubMed ID: 27374532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monodisperse Alginate Microcapsules with Spatially Confined Bioactive Molecules via Microfluid-Generated W/W/O Emulsions.
    Sun H; Zheng H; Tang Q; Dong Y; Qu F; Wang Y; Yang G; Meng T
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37313-37321. PubMed ID: 31517474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation and statistical optimization of gastric floating alginate/oil/chitosan capsules loading procyanidins: in vitro and in vivo evaluations.
    Chen R; Guo X; Liu X; Cui H; Wang R; Han J
    Int J Biol Macromol; 2018 Mar; 108():1082-1091. PubMed ID: 29128589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes.
    Yoksan R; Jirawutthiwongchai J; Arpo K
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):292-7. PubMed ID: 20004558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microencapsulation of oils using sodium alginate.
    Chan LW; Lim LT; Heng PW
    J Microencapsul; 2000; 17(6):757-66. PubMed ID: 11063422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Sep; 10(17):2292-5. PubMed ID: 20625583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.