BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 28097934)

  • 1. Automatic and quantitative measurement of laryngeal video stroboscopic images.
    Kuo CJ; Kuo J; Hsiao SW; Lee CL; Lee JC; Ke BH
    Proc Inst Mech Eng H; 2017 Jan; 231(1):48-57. PubMed ID: 28097934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of laryngeal video stroboscope with laser marking module for dynamic glottis measurement.
    Kuo CF; Wang HW; Hsiao SW; Peng KC; Chou YL; Lai CY; Hsu CT
    Comput Med Imaging Graph; 2014 Jan; 38(1):34-41. PubMed ID: 24238805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic recognizing of vocal fold disorders from glottis images.
    Huang CC; Leu YS; Kuo CF; Chu WL; Chu YH; Wu HC
    Proc Inst Mech Eng H; 2014 Sep; 228(9):952-61. PubMed ID: 25313026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative assessment of videolaryngostroboscopic images in patients with glottic pathologies.
    Niebudek-Bogusz E; Kopczynski B; Strumillo P; Morawska J; Wiktorowicz J; Sliwinska-Kowalska M
    Logoped Phoniatr Vocol; 2017 Jul; 42(2):73-83. PubMed ID: 27132636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network.
    Fehling MK; Grosch F; Schuster ME; Schick B; Lohscheller J
    PLoS One; 2020; 15(2):e0227791. PubMed ID: 32040514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automated glottis segmentation in endoscopic videos using local color and shape features of glottal regions.
    Gloger O; Lehnert B; Schrade A; Völzke H
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):795-806. PubMed ID: 25350912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qualification of a quantitative laryngeal imaging system using videostroboscopy and videokymography.
    Popolo PS; Titze IR
    Ann Otol Rhinol Laryngol; 2008 Jun; 117(6):404-12. PubMed ID: 18646436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using image processing technology combined with decision tree algorithm in laryngeal video stroboscope automatic identification of common vocal fold diseases.
    Jeffrey Kuo CF; Wang PC; Chu YH; Wang HW; Lai CY
    Comput Methods Programs Biomed; 2013 Oct; 112(1):228-36. PubMed ID: 23915804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional changes in the upper airway during neuromuscular stimulation of laryngeal muscles.
    Ludlow CL; Hang C; Bielamowicz S; Choyke P; Hampshire V; Selbie WS
    Artif Organs; 1999 May; 23(5):463-5. PubMed ID: 10378944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersegmenter Variability in High-Speed Laryngoscopy-Based Glottal Area Waveform Measures.
    Maryn Y; Verguts M; Demarsin H; van Dinther J; Gomez P; Schlegel P; Döllinger M
    Laryngoscope; 2020 Nov; 130(11):E654-E661. PubMed ID: 31840827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting physiologically relevant parameters of vocal folds from high-speed video image series.
    Tao C; Zhang Y; Jiang JJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):794-801. PubMed ID: 17518275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonation Threshold Pressure/Flow for Reflecting Glottal Closure in Unilateral Vocal Fold Paralysis.
    Jen JH; Chan RW; Wu CH; Wang CT
    Laryngoscope; 2021 May; 131(5):E1598-E1604. PubMed ID: 33232528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Objective measurement of mucosal wave parameters in diagnosing benign lesions of the vocal folds.
    Krasnodębska P; Szkiełkowska A; Miaśkiewicz B; Włodarczyk E; Domeracka-Kołodziej A; Skarżyński H
    Logoped Phoniatr Vocol; 2019 Jul; 44(2):73-78. PubMed ID: 29318925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed Videolaryngoscopy: Quantitative Parameters of Glottal Area Waveforms and High-speed Kymography in Healthy Individuals.
    Tsutsumi M; Isotani S; Pimenta RA; Dajer ME; Hachiya A; Tsuji DH; Tayama N; Yokonishi H; Imagawa H; Yamauchi A; Takano S; Sakakibara KI; Montagnoli AN
    J Voice; 2017 May; 31(3):282-290. PubMed ID: 27793519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Segmentation of Membranous Glottal Gap Area with U-Net-Based Architecture.
    Hackman A; Chen CH; Chen AW; Chen MK
    Laryngoscope; 2024 Jun; 134(6):2835-2843. PubMed ID: 38217455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech.
    Naghibolhosseini M; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF
    J Voice; 2018 Mar; 32(2):256.e1-256.e12. PubMed ID: 28647431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voice Acoustic Analysis of Pediatric Vocal Nodule Patients Using Ratios Calculated With Biomedical Image Segmentation.
    Bilal N; Selcuk T; Sarica S; Alkan A; Orhan İ; Doganer A; Sagiroglu S; Kılıc MA
    J Voice; 2019 Mar; 33(2):195-203. PubMed ID: 29273231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glottal Gap tracking by a continuous background modeling using inpainting.
    Andrade-Miranda G; Godino-Llorente JI
    Med Biol Eng Comput; 2017 Dec; 55(12):2123-2141. PubMed ID: 28550413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OpenHSV: an open platform for laryngeal high-speed videoendoscopy.
    Kist AM; Dürr S; Schützenberger A; Döllinger M
    Sci Rep; 2021 Jul; 11(1):13760. PubMed ID: 34215788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.