BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28097937)

  • 1. An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
    Cha HJ; Yi BJ; Won JY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):69-79. PubMed ID: 28097937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Master-Slave Interventional Surgery Robot with Force Feedback and Collaborative Operation.
    Song Y; Li L; Tian Y; Li Z; Yin X
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A linear stepping endovascular intervention robot with variable stiffness and force sensing.
    He C; Wang S; Zuo S
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):671-682. PubMed ID: 29520525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel noncontact detection method of surgeon's operation for a master-slave endovascular surgery robot.
    Zhao Y; Xing H; Guo S; Wang Y; Cui J; Ma Y; Liu Y; Liu X; Feng J; Li Y
    Med Biol Eng Comput; 2020 Apr; 58(4):871-885. PubMed ID: 32077011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel remote-controlled robotic system for cerebrovascular intervention.
    Shen H; Wang C; Xie L; Zhou S; Gu L; Xie H
    Int J Med Robot; 2018 Dec; 14(6):e1943. PubMed ID: 30062697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of a robot-assisted catheter operating system with haptic feedback.
    Song Y; Guo S; Yin X; Zhang L; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Jun; 20(2):50. PubMed ID: 29926195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A vascular interventional surgical robot based on surgeon's operating skills.
    Yang C; Guo S; Bao X; Xiao N; Shi L; Li Y; Jiang Y
    Med Biol Eng Comput; 2019 Sep; 57(9):1999-2010. PubMed ID: 31346947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Operation Support Robot with Sensory-Motor Feedback System for Neuroendovascular Intervention.
    Miyachi S; Nagano Y; Hironaka T; Kawaguchi R; Ohshima T; Matsuo N; Maejima R; Takayasu M
    World Neurosurg; 2019 Jul; 127():e617-e623. PubMed ID: 30930317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.
    Wang K; Chen B; Lu Q; Li H; Liu M; Shen Y; Xu Z
    Int J Med Robot; 2018 Oct; 14(5):e1915. PubMed ID: 29761842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetorheological Fluids Actuated Haptic-Based Teleoperated Catheter Operating System.
    Yin X; Guo S; Song Y
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct manipulation of tool-like masters for controlling a master-slave surgical robotic system.
    Zhang L; Zhou N; Wang S
    Int J Med Robot; 2014 Dec; 10(4):427-37. PubMed ID: 24127347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Vascular Intervention Assist Device Using Bi-Motional Roller Cartridge Structure and Clinical Evaluation.
    Choi J; Park S; Kim YH; Moon Y; Choi J
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.