BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2809804)

  • 1. Mechanisms of pressure-induced myogenic activation of cerebral and renal arteries: role of the endothelium.
    Harder DR; Kauser K; Roman RJ; Lombard JH
    J Hypertens Suppl; 1989 Sep; 7(4):S11-5; discussion S16. PubMed ID: 2809804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cellular mechanism for myogenic regulation of cat cerebral arteries.
    Harder DR
    Ann Biomed Eng; 1985; 13(3-4):335-9. PubMed ID: 4037463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure.
    Harder DR; Gilbert R; Lombard JH
    Am J Physiol; 1987 Oct; 253(4 Pt 2):F778-81. PubMed ID: 2444115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium.
    Harder DR
    Circ Res; 1987 Jan; 60(1):102-7. PubMed ID: 3568282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the vascular endothelium in regulating the response of small arteries of the dog kidney to transmural pressure elevation and reduced PO2.
    Eskinder H; Harder DR; Lombard JH
    Circ Res; 1990 May; 66(5):1427-35. PubMed ID: 2335035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myogenic contraction by modulation of voltage-dependent calcium currents in isolated rat cerebral arteries.
    McCarron JG; Crichton CA; Langton PD; MacKenzie A; Smith GL
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):371-9. PubMed ID: 9032685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced norepinephrine sensitivity in renal arteries at elevated transmural pressure.
    Lombard JH; Eskinder H; Kauser K; Osborn JL; Harder DR
    Am J Physiol; 1990 Jul; 259(1 Pt 2):H29-33. PubMed ID: 2375412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myogenic activation of canine small renal arteries after nonchemical removal of the endothelium.
    Liu Y; Harder DR; Lombard JH
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H302-7. PubMed ID: 8048595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure.
    Knot HJ; Nelson MT
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):199-209. PubMed ID: 9490839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressurization of isolated renal arteries increases inositol trisphosphate and diacylglycerol.
    Narayanan J; Imig M; Roman RJ; Harder DR
    Am J Physiol; 1994 May; 266(5 Pt 2):H1840-5. PubMed ID: 8203583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of reduced oxygen availability upon myogenic depolarization and contraction of cat middle cerebral artery.
    Lombard JH; Smeda J; Madden JA; Harder DR
    Circ Res; 1986 Apr; 58(4):565-9. PubMed ID: 3698219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries.
    Earley S; Waldron BJ; Brayden JE
    Circ Res; 2004 Oct; 95(9):922-9. PubMed ID: 15472118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and ionic signal transduction mechanisms for the mechanical activation of renal arterial vascular smooth muscle.
    Roman RJ; Harder DR
    J Am Soc Nephrol; 1993 Oct; 4(4):986-96. PubMed ID: 7506944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The myogenic response: established facts and attractive hypotheses.
    Schubert R; Mulvany MJ
    Clin Sci (Lond); 1999 Apr; 96(4):313-26. PubMed ID: 10087237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histamine decreases myogenic tone in rat cerebral arteries by H2-receptor-mediated KV channel activation, independent of endothelium and cyclic AMP.
    Jarajapu YP; Oomen C; Uteshev VV; Knot HJ
    Eur J Pharmacol; 2006 Oct; 547(1-3):116-24. PubMed ID: 16920098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-dependent modulation of endothelin-induced vasoconstriction and membrane depolarization in cat cerebral arteries.
    Kauser K; Rubanyi GM; Harder DR
    J Pharmacol Exp Ther; 1990 Jan; 252(1):93-7. PubMed ID: 2405153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of endothelium in regulation of smooth muscle membrane potential and tone in the rabbit middle cerebral artery.
    Yamakawa N; Ohhashi M; Waga S; Itoh T
    Br J Pharmacol; 1997 Aug; 121(7):1315-22. PubMed ID: 9257909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat.
    Lagaud GJ; Skarsgard PL; Laher I; van Breemen C
    J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanoreception by the endothelium: mediators and mechanisms of pressure- and flow-induced vascular responses.
    Rubanyi GM; Freay AD; Kauser K; Johns A; Harder DR
    Blood Vessels; 1990; 27(2-5):246-57. PubMed ID: 2242445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.