These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. On the nature of basal vascular tone in cat skeletal muscle and its dependence on transmural pressure stimuli. Grände PO; Borgström P; Mellander S Acta Physiol Scand; 1979 Dec; 107(4):365-76. PubMed ID: 44427 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of vascular myogenic tone and reactivity by calcium antagonists. Nordlander MI J Hypertens Suppl; 1989 Sep; 7(4):S141-5; discussion S146. PubMed ID: 2681591 [TBL] [Abstract][Full Text] [Related]
5. Dynamic and static components in the myogenic control of vascular tone in cat skeletal muscle. Grände PO Acta Physiol Scand Suppl; 1979; 476():1-44. PubMed ID: 232614 [No Abstract] [Full Text] [Related]
6. Myogenic vascular regulation in skeletal muscle in vivo is not dependent of endothelium-derived nitric oxide. Ekelund U; Björnberg J; Grände PO; Albert U; Mellander S Acta Physiol Scand; 1992 Feb; 144(2):199-207. PubMed ID: 1575052 [TBL] [Abstract][Full Text] [Related]
7. Pressure and flow-dependent tone in resistance arteries. Role of myogenic tone. Henrion D Arch Mal Coeur Vaiss; 2005 Sep; 98(9):913-21. PubMed ID: 16231579 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of the metabolic interaction with myogenic vascular reactivity during blood flow autoregulation. Borgström P; Grände PO; Mellander S Acta Physiol Scand; 1984 Nov; 122(3):275-84. PubMed ID: 6151338 [TBL] [Abstract][Full Text] [Related]
9. Myogenic mechanisms in the control of systemic resistance and transcapillary fluid exchange in man. Lundvall J J Hypertens Suppl; 1989 Sep; 7(4):S85-91. PubMed ID: 2809809 [TBL] [Abstract][Full Text] [Related]
11. Site of autoregulatory reactions in the vascular bed of cat skeletal muscle as determined with a new technique for segmental vascular resistance recordings. Björnberg J; Grände PO; Maspers M; Mellander S Acta Physiol Scand; 1988 Jun; 133(2):199-210. PubMed ID: 3227915 [TBL] [Abstract][Full Text] [Related]
12. Pre-existing level of tone is an important determinant of cerebral artery autoregulatory responsiveness. Osol G; Osol R; Halpern W J Hypertens Suppl; 1989 Sep; 7(4):S67-9. PubMed ID: 2809808 [TBL] [Abstract][Full Text] [Related]
13. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise. Björnberg J; Maspers M; Mellander S Acta Physiol Scand; 1989 Feb; 135(2):83-94. PubMed ID: 2923003 [TBL] [Abstract][Full Text] [Related]
14. A mathematical description of the myogenic response in the microcirculation. Borgström P; Grände PO; Mellander S Acta Physiol Scand; 1982 Dec; 116(4):363-76. PubMed ID: 7170999 [TBL] [Abstract][Full Text] [Related]
15. [Organization of the process of autoregulation of cerebral blood flow]. Mitagvariia NP; Meladze VG; Begiashvili VT Fiziol Zh SSSR Im I M Sechenova; 1984 Jun; 70(6):822-8. PubMed ID: 6479365 [TBL] [Abstract][Full Text] [Related]
16. Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone. Mellander S; Maspers M; Björnberg J; Andersson LO Acta Physiol Scand; 1987 Mar; 129(3):337-51. PubMed ID: 2883809 [TBL] [Abstract][Full Text] [Related]
18. Interaction of nitric oxide with myogenic and adrenergic vasoconstrictor processes in the control of microcirculatory blood flow. Pohl U; de Wit C Pflugers Arch; 1996; 432(3 Suppl):R107-10. PubMed ID: 8994551 [TBL] [Abstract][Full Text] [Related]
19. Role of the microcirculation to skeletal muscle during shock. Garrison RN; Cryer HM Prog Clin Biol Res; 1989; 299():43-52. PubMed ID: 2657799 [TBL] [Abstract][Full Text] [Related]
20. Evidence for a rate-sensitive regulatory mechanism in myogenic microvascular control. Grände PO; Lundvall J; Mellander S Acta Physiol Scand; 1977 Apr; 99(4):432-47. PubMed ID: 857611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]