These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 28098265)
1. Depth-selective photothermal IR spectroscopy of skin: potential application for non-invasive glucose measurement. Hertzberg O; Bauer A; Küderle A; Pleitez MA; Mäntele W Analyst; 2017 Jan; 142(3):495-502. PubMed ID: 28098265 [TBL] [Abstract][Full Text] [Related]
2. Photothermal deflectometry enhanced by total internal reflection enables non-invasive glucose monitoring in human epidermis. Pleitez MA; Hertzberg O; Bauer A; Seeger M; Lieblein T; Lilienfeld-Toal HV; Mäntele W Analyst; 2015 Jan; 140(2):483-8. PubMed ID: 25408951 [TBL] [Abstract][Full Text] [Related]
3. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement. Pleitez M; von Lilienfeld-Toal H; Mäntele W Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):61-5. PubMed ID: 22000639 [TBL] [Abstract][Full Text] [Related]
4. IR-spectroscopy of skin in vivo: Optimal skin sites and properties for non-invasive glucose measurement by photoacoustic and photothermal spectroscopy. Bauer A; Hertzberg O; Küderle A; Strobel D; Pleitez MA; Mäntele W J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28417584 [TBL] [Abstract][Full Text] [Related]
5. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers. Pleitez MA; Hertzberg O; Bauer A; Lieblein T; Glasmacher M; Tholl H; Mäntele W Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():220-227. PubMed ID: 28500960 [TBL] [Abstract][Full Text] [Related]
6. [In-Vivo Noninvasive Measurement of Human Blood Glucose Levels by Mid-Infrared Spectrograph with External CO(2) Laser Source]. Zhang QQ; Fan YL; He XQ; Sun YM Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):85-8. PubMed ID: 30192485 [TBL] [Abstract][Full Text] [Related]
7. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid. Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W Rev Sci Instrum; 2013 Aug; 84(8):084901. PubMed ID: 24007090 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of a Novel Noninvasive Blood Glucose Monitor Based on Mid-Infrared Quantum Cascade Laser Technology and Photothermal Detection. Lubinski T; Plotka B; Janik S; Canini L; Mäntele W J Diabetes Sci Technol; 2021 Jan; 15(1):6-10. PubMed ID: 32627580 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Opportunities and Limitations of Mid-Infrared Skin Spectroscopy for Noninvasive Blood Glucose Monitoring. Delbeck S; Heise HM J Diabetes Sci Technol; 2021 Jan; 15(1):19-27. PubMed ID: 32590911 [TBL] [Abstract][Full Text] [Related]
10. Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy. Heise HM; Marbach R Cell Mol Biol (Noisy-le-grand); 1998 Sep; 44(6):899-912. PubMed ID: 9763193 [TBL] [Abstract][Full Text] [Related]
11. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy. Pfeifer M; Ruf A; Fischer P Opt Express; 2013 Nov; 21(22):25643-54. PubMed ID: 24216789 [TBL] [Abstract][Full Text] [Related]
12. In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy. Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W Anal Chem; 2013 Jan; 85(2):1013-20. PubMed ID: 23214424 [TBL] [Abstract][Full Text] [Related]
13. Progress and Perspectives of Mid-Infrared Photoacoustic Spectroscopy for Non-Invasive Glucose Detection. Kaysir MR; Song J; Rassel S; Aloraynan A; Ban D Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504114 [TBL] [Abstract][Full Text] [Related]
14. A Compact Mid-Infrared Spectroscopy System for Healthcare Applications Based on a Wavelength-Swept, Pulsed Quantum Cascade Laser. Koyama T; Shibata N; Kino S; Sugiyama A; Akikusa N; Matsuura Y Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570744 [TBL] [Abstract][Full Text] [Related]
15. Non-invasive blood glucose measurement by Fourier transform infrared spectroscopic analysis through the mucous membrane of the lip: application of a chalcogenide optical fiber system. Uemura T; Nishida K; Sakakida M; Ichinose K; Shimoda S; Shichiri M Front Med Biol Eng; 1999; 9(2):137-53. PubMed ID: 10450500 [TBL] [Abstract][Full Text] [Related]
16. Polarimetric Balanced Detection: Background-Free Mid-IR Evanescent Field Laser Spectroscopy for Low-Noise, Long-term Stable Chemical Sensing. Freitag S; Baer M; Buntzoll L; Ramer G; Schwaighofer A; Schmauss B; Lendl B ACS Sens; 2021 Jan; 6(1):35-42. PubMed ID: 33372759 [TBL] [Abstract][Full Text] [Related]
17. Mid-Infrared Photothermal Spectroscopy for the Detection of Caffeine in Beverages. Ricchiuti G; Riedlsperger L; Dabrowska A; Rosenberg E; O'Faolain L; Lendl B Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544236 [TBL] [Abstract][Full Text] [Related]
18. Broadband laser-based mid-IR spectroscopy for analysis of proteins and monitoring of enzyme activity. Schwaighofer A; Akhgar CK; Lendl B Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119563. PubMed ID: 33621933 [TBL] [Abstract][Full Text] [Related]