These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28098323)
1. Two-dimensional melting of colloids with long-range attractive interactions. Du D; Doxastakis M; Hilou E; Biswal SL Soft Matter; 2017 Feb; 13(8):1548-1553. PubMed ID: 28098323 [TBL] [Abstract][Full Text] [Related]
2. Predicting the phase diagram of two-dimensional colloidal systems with long-range interactions. Mejía-Rosales SJ; Gil-Villegas A; Ivlev BI; Ruiz-García J J Phys Chem B; 2006 Nov; 110(44):22230-6. PubMed ID: 17078663 [TBL] [Abstract][Full Text] [Related]
3. Pattern formation and coarse-graining in two-dimensional colloids driven by multiaxial magnetic fields. Müller K; Osterman N; Babič D; Likos CN; Dobnikar J; Nikoubashman A Langmuir; 2014 May; 30(18):5088-96. PubMed ID: 24742096 [TBL] [Abstract][Full Text] [Related]
4. Event-chain Monte Carlo simulations of the liquid to solid transition of two-dimensional decagonal colloidal quasicrystals. Martinsons M; Hielscher J; Kapfer SC; Schmiedeberg M J Phys Condens Matter; 2019 Nov; 31(47):475103. PubMed ID: 31342938 [TBL] [Abstract][Full Text] [Related]
5. Anisotropic defect-mediated melting of two-dimensional colloidal crystals. Eisenmann C; Gasser U; Keim P; Maret G Phys Rev Lett; 2004 Sep; 93(10):105702. PubMed ID: 15447420 [TBL] [Abstract][Full Text] [Related]
6. Discrete elastic model for two-dimensional melting. Lansac Y; Glaser MA; Clark NA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041501. PubMed ID: 16711803 [TBL] [Abstract][Full Text] [Related]
7. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study. Patti A; Cuetos A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011403. PubMed ID: 23005413 [TBL] [Abstract][Full Text] [Related]
8. Fluctuations of orientational order and clustering in a two-dimensional colloidal system under quenched disorder. Horn T; Deutschländer S; Löwen H; Maret G; Keim P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062305. PubMed ID: 24483442 [TBL] [Abstract][Full Text] [Related]
9. Phase diagram of a quasi-two-dimensional colloid assembly. Frydel D; Rice SA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061405. PubMed ID: 14754202 [TBL] [Abstract][Full Text] [Related]
10. A structure-dynamics relationship in ratcheted colloids: resonance melting, dislocations, and defect clusters. Khali SS; Chakraborty D; Chaudhuri D Soft Matter; 2020 Mar; 16(10):2552-2564. PubMed ID: 32077881 [TBL] [Abstract][Full Text] [Related]
11. Melting scenarios for three-dimensional dusty plasma clusters. Schella A; Miksch T; Melzer A; Schablinski J; Block D; Piel A; Thomsen H; Ludwig P; Bonitz M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056402. PubMed ID: 22181523 [TBL] [Abstract][Full Text] [Related]
12. Melting and solid-solid transitions of two-dimensional crystals composed of Janus spheres. Huang T; Han Y; Chen Y Soft Matter; 2020 Mar; 16(12):3015-3021. PubMed ID: 32129423 [TBL] [Abstract][Full Text] [Related]
13. Phase diagram and aggregation dynamics of a monolayer of paramagnetic colloids. Pham AT; Zhuang Y; Detwiler P; Socolar JES; Charbonneau P; Yellen BB Phys Rev E; 2017 May; 95(5-1):052607. PubMed ID: 28618506 [TBL] [Abstract][Full Text] [Related]
14. Melting of two-dimensional adatom superlattices stabilized by long-range electronic interactions. Negulyaev NN; Stepanyuk VS; Niebergall L; Bruno P; Pivetta M; Ternes M; Patthey F; Schneider WD Phys Rev Lett; 2009 Jun; 102(24):246102. PubMed ID: 19659032 [TBL] [Abstract][Full Text] [Related]
15. Influence of perpendicular external magnetic field on microstructures of monolayer composed of ferromagnetic particles: analysis by means of quasi-two-dimensional Monte Carlo simulation. Aoshima M; Satoh A; Chantrell RW J Colloid Interface Sci; 2008 Jul; 323(1):158-68. PubMed ID: 18452934 [TBL] [Abstract][Full Text] [Related]
16. Specific heat in two-dimensional melting. Deutschländer S; Puertas AM; Maret G; Keim P Phys Rev Lett; 2014 Sep; 113(12):127801. PubMed ID: 25279643 [TBL] [Abstract][Full Text] [Related]
17. Simulating formation of voids in charged colloids by brownian dynamics. Wang KG Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):6937-41. PubMed ID: 11102048 [TBL] [Abstract][Full Text] [Related]
18. A two-component mixture of charged particles confined in a channel: melting. Ferreira WP; Farias GA; Peeters FM J Phys Condens Matter; 2010 Jul; 22(28):285103. PubMed ID: 21399292 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions. Kapfer SC; Krauth W Phys Rev Lett; 2015 Jan; 114(3):035702. PubMed ID: 25659008 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulations of a model two-dimensional, two-patch colloidal particles. Rżysko W; Sokołowski S; Staszewski T J Chem Phys; 2015 Aug; 143(6):064509. PubMed ID: 26277147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]