These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 28098444)
1. Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites. Wang J; Ge X; Liu Z; Thia L; Yan Y; Xiao W; Wang X J Am Chem Soc; 2017 Feb; 139(5):1878-1884. PubMed ID: 28098444 [TBL] [Abstract][Full Text] [Related]
2. Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting. Govindhan M; Mao B; Chen A Nanoscale; 2016 Jan; 8(3):1485-92. PubMed ID: 26677009 [TBL] [Abstract][Full Text] [Related]
3. Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO Wang J; Huang X; Xi S; Lee JM; Wang C; Du Y; Wang X Angew Chem Int Ed Engl; 2019 Sep; 58(38):13532-13539. PubMed ID: 31317633 [TBL] [Abstract][Full Text] [Related]
4. Stabilization of High-Valent Molecular Cobalt Sites through Oxidized Phosphorus in Reduced Graphene Oxide for Enhanced Oxygen Evolution Catalysis. Wang X; Yang J; Dai G; Song W; Win PEP; Wang J Angew Chem Int Ed Engl; 2024 Oct; ():e202416274. PubMed ID: 39387158 [TBL] [Abstract][Full Text] [Related]
5. Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co Kang W; Wei R; Yin H; Li D; Chen Z; Huang Q; Zhang P; Jing H; Wang X; Li C J Am Chem Soc; 2023 Feb; 145(6):3470-3477. PubMed ID: 36724407 [TBL] [Abstract][Full Text] [Related]
6. Atomic Mechanism of Electrocatalytically Active Co-N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction. Li F; Shu H; Hu C; Shi Z; Liu X; Liang P; Chen X ACS Appl Mater Interfaces; 2015 Dec; 7(49):27405-13. PubMed ID: 26566009 [TBL] [Abstract][Full Text] [Related]
7. In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Wang J; Gan L; Zhang W; Peng Y; Yu H; Yan Q; Xia X; Wang X Sci Adv; 2018 Mar; 4(3):eaap7970. PubMed ID: 29536041 [TBL] [Abstract][Full Text] [Related]
8. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333 [TBL] [Abstract][Full Text] [Related]
9. Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. Chen P; Xu K; Zhou T; Tong Y; Wu J; Cheng H; Lu X; Ding H; Wu C; Xie Y Angew Chem Int Ed Engl; 2016 Feb; 55(7):2488-92. PubMed ID: 26757358 [TBL] [Abstract][Full Text] [Related]
10. Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Qi J; Lin YP; Chen D; Zhou T; Zhang W; Cao R Angew Chem Int Ed Engl; 2020 Jun; 59(23):8917-8921. PubMed ID: 32112670 [TBL] [Abstract][Full Text] [Related]
11. Thermocatalytic epoxidation by cobalt sulfide inspired by the material's electrocatalytic activity for oxygen evolution reaction. Wyss V; Dinu IA; Marot L; Palivan CG; Delley MF Catal Sci Technol; 2024 Aug; 14(16):4550-4565. PubMed ID: 39139589 [TBL] [Abstract][Full Text] [Related]
12. Double-Exchange-Induced in situ Conductivity in Nickel-Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Tian B; Shin H; Liu S; Fei M; Mu Z; Liu C; Pan Y; Sun Y; Goddard WA; Ding M Angew Chem Int Ed Engl; 2021 Jul; 60(30):16448-16456. PubMed ID: 33973312 [TBL] [Abstract][Full Text] [Related]
13. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. Song F; Hu X J Am Chem Soc; 2014 Nov; 136(47):16481-4. PubMed ID: 25380057 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Tian GL; Zhao MQ; Yu D; Kong XY; Huang JQ; Zhang Q; Wei F Small; 2014 Jun; 10(11):2251-9. PubMed ID: 24574006 [TBL] [Abstract][Full Text] [Related]
15. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Su Y; Zhu Y; Jiang H; Shen J; Yang X; Zou W; Chen J; Li C Nanoscale; 2014 Dec; 6(24):15080-9. PubMed ID: 25369741 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. Nguyen AI; Ziegler MS; Oña-Burgos P; Sturzbecher-Hohne M; Kim W; Bellone DE; Tilley TD J Am Chem Soc; 2015 Oct; 137(40):12865-72. PubMed ID: 26390993 [TBL] [Abstract][Full Text] [Related]
17. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. Jin H; Wang J; Su D; Wei Z; Pang Z; Wang Y J Am Chem Soc; 2015 Feb; 137(7):2688-94. PubMed ID: 25658518 [TBL] [Abstract][Full Text] [Related]
18. SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. Su C; Wang W; Chen Y; Yang G; Xu X; Tadé MO; Shao Z ACS Appl Mater Interfaces; 2015 Aug; 7(32):17663-70. PubMed ID: 26222739 [TBL] [Abstract][Full Text] [Related]
19. The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions. Al-Mamun M; Zhu Z; Yin H; Su X; Zhang H; Liu P; Yang H; Wang D; Tang Z; Wang Y; Zhao H Chem Commun (Camb); 2016 Aug; 52(60):9450-3. PubMed ID: 27377872 [TBL] [Abstract][Full Text] [Related]
20. Porous LaCo1-xNixO3-δ Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc-Air Battery. Vignesh A; Prabu M; Shanmugam S ACS Appl Mater Interfaces; 2016 Mar; 8(9):6019-31. PubMed ID: 26887571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]