BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28098459)

  • 1. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries.
    Zhang F; Zhu J; Zhang D; Schwingenschlögl U; Alshareef HN
    Nano Lett; 2017 Feb; 17(2):1302-1311. PubMed ID: 28098459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Properties of Micron-Sized SnO Anode Using a Glyme-Based Electrolyte for Sodium-Ion Battery.
    Kim H; Lee SW; Lee KY; Park JW; Ryu HS; Cho KK; Cho GB; Kim KW; Ahn JH; Ahn HJ
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6422-6426. PubMed ID: 29677807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insight into the Stability of HfO2 -Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries.
    Ahmed B; Anjum DH; Hedhili MN; Alshareef HN
    Small; 2015 Sep; 11(34):4341-50. PubMed ID: 26061915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage.
    Sun W; Rui X; Yang D; Sun Z; Li B; Zhang W; Zong Y; Madhavi S; Dou S; Yan Q
    ACS Nano; 2015 Nov; 9(11):11371-81. PubMed ID: 26487194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Dimensional Rod-Like Sb₂S₃-Based Anode for High-Performance Sodium-Ion Batteries.
    Hou H; Jing M; Huang Z; Yang Y; Zhang Y; Chen J; Wu Z; Ji X
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19362-9. PubMed ID: 26284385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Germanium Sulfide Nanosheets as an Ultra-Stable and High Capacity Anode for Lithium Ion Batteries.
    Wang B; Du W; Yang Y; Zhang Y; Zhang Q; Rui X; Geng H; Li CC
    Chemistry; 2020 May; 26(29):6554-6560. PubMed ID: 31562784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of ultrathin MoS₂ nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes.
    Zhang S; Yu X; Yu H; Chen Y; Gao P; Li C; Zhu C
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21880-5. PubMed ID: 25479568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Bismuth Oxide Heterostructured Nanosheets for Lithium- and Sodium-Ion Storages.
    Mei J; Liao T; Ayoko GA; Sun Z
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28205-28212. PubMed ID: 31298517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery.
    Shin JH; Song JY
    Nano Converg; 2016; 3(1):9. PubMed ID: 28191419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.
    Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical mesoporous SnO microspheres as high capacity anode materials for sodium-ion batteries.
    Su D; Xie X; Wang G
    Chemistry; 2014 Mar; 20(11):3192-7. PubMed ID: 24522961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries.
    Xu X; Ji S; Gu M; Liu J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20957-64. PubMed ID: 26336101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries.
    Wang Y; Tian W; Wang L; Zhang H; Liu J; Peng T; Pan L; Wang X; Wu M
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5577-5585. PubMed ID: 29346719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries.
    Hou H; Shao L; Zhang Y; Zou G; Chen J; Ji X
    Adv Sci (Weinh); 2017 Jan; 4(1):1600243. PubMed ID: 28105399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Pot Decoration of Graphene with SnO₂ Nanocrystals by an Elevated Hydrothermal Process and Their Application as Anode Materials for Lithium Ion Batteries.
    Kong Z; Liu D; Liu X; Fu A; Wang Y; Guo P; Li H
    J Nanosci Nanotechnol; 2019 Feb; 19(2):850-858. PubMed ID: 30360162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries.
    Yang Y; Shi W; Leng S; Cheng H
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):41-52. PubMed ID: 35973256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Encapsulated Tin Oxide Nanocomposites: An Efficient Anode for High Performance Sodium-Ion Batteries.
    Kalubarme RS; Lee JY; Park CJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17226-37. PubMed ID: 26186401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topotactic Transformation Synthesis of 2D Ultrathin GeS
    Li CC; Wang B; Chen D; Gan LY; Feng Y; Zhang Y; Yang Y; Geng H; Rui X; Yu Y
    ACS Nano; 2020 Jan; 14(1):531-540. PubMed ID: 31846288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.