BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28098724)

  • 1. CENTRAL MACULAR THICKNESS IN 6.5-YEAR-OLD CHILDREN BORN EXTREMELY PRETERM IS STRONGLY ASSOCIATED WITH GESTATIONAL AGE EVEN WHEN ADJUSTED FOR RISK FACTORS.
    Molnar AEC; Rosén RM; Nilsson M; Larsson EKB; Holmström GE; Hellgren KM
    Retina; 2017 Dec; 37(12):2281-2288. PubMed ID: 28098724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical relevance of retinal structure in children with laser-treated retinopathy of prematurity versus controls - using optical coherence tomography.
    Stoica F; Chirita-Emandi A; Andreescu N; Stanciu A; Zimbru CG; Puiu M
    Acta Ophthalmol; 2018 Mar; 96(2):e222-e228. PubMed ID: 28926210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macular thickness in children aged 3-6 years born preterm.
    Yabas Kiziloglu O; Coskun Y; Guven NE; Toygar O
    J AAPOS; 2020 Feb; 24(1):12.e1-12.e5. PubMed ID: 31923622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF THE FOVEA IN CHILDREN BORN PRETERM.
    Falavarjani KG; Iafe NA; Velez FG; Schwartz SD; Sadda SR; Sarraf D; Tsui I
    Retina; 2017 Dec; 37(12):2289-2294. PubMed ID: 28098735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of macular structure imaged by optical coherence tomography in preterm and full-term children.
    Ecsedy M; Szamosi A; Karkó C; Zubovics L; Varsányi B; Németh J; Récsán Z
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5207-11. PubMed ID: 17962475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central macular thickness is correlated with gestational age at birth in prematurely born children.
    Akerblom H; Larsson E; Eriksson U; Holmström G
    Br J Ophthalmol; 2011 Jun; 95(6):799-803. PubMed ID: 20974631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macular morphology in former preterm and full-term infants aged 4 to 10 years.
    Fieß A; Janz J; Schuster AK; Kölb-Keerl R; Knuf M; Kirchhof B; Muether PS; Bauer J
    Graefes Arch Clin Exp Ophthalmol; 2017 Jul; 255(7):1433-1442. PubMed ID: 28439729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INCREASED FOVEAL GANGLION CELL AND INNER PLEXIFORM LAYER THICKNESS IN CHILDREN AGED 6.5 YEARS BORN EXTREMELY PRETERM.
    Rosén RM; Hellgren KM; Venkataraman AP; Dominguez Vicent A; Nilsson M
    Retina; 2020 Jul; 40(7):1344-1352. PubMed ID: 31157715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of posterior segment optical coherence tomography findings in full-term and preterm children without retinopathy of prematurity.
    Martínez-Córdoba CJ; Quijano-Nieto BA; Echeverría-González CL; Sierra-Bernal RM
    Indian J Ophthalmol; 2021 Aug; 69(8):2151-2156. PubMed ID: 34304199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OCT-Based Macular Structure-Function Correlation in Dependence on Birth Weight and Gestational Age-the Giessen Long-Term ROP Study.
    Bowl W; Stieger K; Bokun M; Schweinfurth S; Holve K; Andrassi-Darida M; Lorenz B
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT235-41. PubMed ID: 27409477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical period for foveal fine structure in children with regressed retinopathy of prematurity.
    Wang J; Spencer R; Leffler JN; Birch EE
    Retina; 2012 Feb; 32(2):330-9. PubMed ID: 21900854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of birth parameters with OCT measured macular and retinal nerve fiber layer thickness.
    Tariq YM; Pai A; Li H; Afsari S; Gole GA; Burlutsky G; Mitchell P
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1709-15. PubMed ID: 21212177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A methodological approach for evaluation of foveal immaturity after extremely preterm birth.
    Rosén R; Sjöstrand J; Nilsson M; Hellgren K
    Ophthalmic Physiol Opt; 2015 Jul; 35(4):433-41. PubMed ID: 26094832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The macular findings on spectral-domain optical coherence tomography in premature infants with or without retinopathy of prematurity.
    Gursoy H; Bilgec MD; Erol N; Basmak H; Colak E
    Int Ophthalmol; 2016 Aug; 36(4):591-600. PubMed ID: 26750097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The assessment of multifocal ERG responses in school-age children with history of prematurity.
    Michalczuk M; Urban B; Chrzanowska-Grenda B; Oziębło-Kupczyk M; Bakunowicz-Łazarczyk A; Krętowska M
    Doc Ophthalmol; 2016 Feb; 132(1):47-55. PubMed ID: 26825996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual acuity, optical components, and macular abnormalities in patients with a history of retinopathy of prematurity.
    Wu WC; Lin RI; Shih CP; Wang NK; Chen YP; Chao AN; Chen KJ; Chen TL; Hwang YS; Lai CC; Huang CY; Tsai S
    Ophthalmology; 2012 Sep; 119(9):1907-16. PubMed ID: 22578258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macular parameters and prematurity: A spectral domain coherence tomography study.
    Tariq YM; Burlutsky G; Mitchell P
    J AAPOS; 2012 Aug; 16(4):382-5. PubMed ID: 22824491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral-domain optical coherence tomography of the macula in preterm infants treated with bevacizumab for retinopathy of prematurity.
    Dorta P; Kychenthal A
    Ophthalmic Surg Lasers Imaging Retina; 2015 Mar; 46(3):321-6. PubMed ID: 25856817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal nerve fibre layer thickness in school-aged prematurely-born children compared to children born at term.
    Åkerblom H; Holmström G; Eriksson U; Larsson E
    Br J Ophthalmol; 2012 Jul; 96(7):956-60. PubMed ID: 22569283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural impact of arrested foveal development in children born extremely preterm without ROP at 6.5 years of age.
    Venkataraman AP; Popovic Z; Hellgren K; Sjöstrand J; Nilsson M
    Eye (Lond); 2023 Jun; 37(9):1810-1815. PubMed ID: 36114289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.