These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 28099154)
1. Vitamin K epoxide reductase regulation of androgen receptor activity. Tew BY; Hong TB; Otto-Duessel M; Elix C; Castro E; He M; Wu X; Pal SK; Kalkum M; Jones JO Oncotarget; 2017 Feb; 8(8):13818-13831. PubMed ID: 28099154 [TBL] [Abstract][Full Text] [Related]
2. Vitamin K epoxide reductase expression and prostate cancer risk. Tew BY; Pal SK; He M; Tong T; Wu H; Hsu J; Liu X; Neuhausen SL; Jones JO Urol Oncol; 2017 Mar; 35(3):112.e13-112.e18. PubMed ID: 27889279 [TBL] [Abstract][Full Text] [Related]
3. Peroxisome proliferator-activated receptor gamma controls prostate cancer cell growth through AR-dependent and independent mechanisms. Elix CC; Salgia MM; Otto-Duessel M; Copeland BT; Yoo C; Lee M; Tew BY; Ann D; Pal SK; Jones JO Prostate; 2020 Feb; 80(2):162-172. PubMed ID: 31769890 [TBL] [Abstract][Full Text] [Related]
4. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy. Hammed A; Matagrin B; Spohn G; Prouillac C; Benoit E; Lattard V J Biol Chem; 2013 Oct; 288(40):28733-42. PubMed ID: 23928358 [TBL] [Abstract][Full Text] [Related]
5. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. Wajih N; Sane DC; Hutson SM; Wallin R J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of oral anticoagulants with vitamin K epoxide reductase in its native milieu. Chen X; Jin DY; Stafford DW; Tie JK Blood; 2018 Nov; 132(18):1974-1984. PubMed ID: 30089628 [TBL] [Abstract][Full Text] [Related]
7. Warfarin alters vitamin K metabolism: a surprising mechanism of VKORC1 uncoupling necessitates an additional reductase. Rishavy MA; Hallgren KW; Wilson L; Singh S; Runge KW; Berkner KL Blood; 2018 Jun; 131(25):2826-2835. PubMed ID: 29592891 [TBL] [Abstract][Full Text] [Related]
8. A new cell culture-based assay quantifies vitamin K 2,3-epoxide reductase complex subunit 1 function and reveals warfarin resistance phenotypes not shown by the dithiothreitol-driven VKOR assay. Fregin A; Czogalla KJ; Gansler J; Rost S; Taverna M; Watzka M; Bevans CG; Müller CR; Oldenburg J J Thromb Haemost; 2013 May; 11(5):872-80. PubMed ID: 23452238 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells. Tie JK; Jin DY; Tie K; Stafford DW J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884 [TBL] [Abstract][Full Text] [Related]
10. Peroxisome proliferator-activated receptor gamma-independent suppression of androgen receptor expression by troglitazone mechanism and pharmacologic exploitation. Yang CC; Wang YC; Wei S; Lin LF; Chen CS; Lee CC; Lin CC; Chen CS Cancer Res; 2007 Apr; 67(7):3229-38. PubMed ID: 17409431 [TBL] [Abstract][Full Text] [Related]
11. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition. Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176 [TBL] [Abstract][Full Text] [Related]
12. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin. Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630 [TBL] [Abstract][Full Text] [Related]
13. Peroxisome proliferator-activated receptor-gamma and growth inhibition by its ligands in prostate cancer. Nagata D; Yoshihiro H; Nakanishi M; Naruyama H; Okada S; Ando R; Tozawa K; Kohri K Cancer Detect Prev; 2008; 32(3):259-66. PubMed ID: 18789607 [TBL] [Abstract][Full Text] [Related]
14. VKORC1L1, An Enzyme Mediating the Effect of Vitamin K in Liver and Extrahepatic Tissues. Lacombe J; Ferron M Nutrients; 2018 Jul; 10(8):. PubMed ID: 30050002 [TBL] [Abstract][Full Text] [Related]
15. Functional study of the vitamin K cycle in mammalian cells. Tie JK; Jin DY; Straight DL; Stafford DW Blood; 2011 Mar; 117(10):2967-74. PubMed ID: 21239697 [TBL] [Abstract][Full Text] [Related]
16. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1. Van Horn WD Crit Rev Biochem Mol Biol; 2013; 48(4):357-72. PubMed ID: 23631591 [TBL] [Abstract][Full Text] [Related]
17. PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Kaarbø M; Mikkelsen OL; Malerød L; Qu S; Lobert VH; Akgul G; Halvorsen T; Maelandsmo GM; Saatcioglu F Cell Oncol; 2010; 32(1-2):11-27. PubMed ID: 20203370 [TBL] [Abstract][Full Text] [Related]
19. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver. Cain D; Hutson SM; Wallin R Thromb Haemost; 1998 Jul; 80(1):128-33. PubMed ID: 9684798 [TBL] [Abstract][Full Text] [Related]
20. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells. Murthy S; Agoulnik IU; Weigel NL Prostate; 2005 Sep; 64(4):362-72. PubMed ID: 15754350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]