These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Gil ES; Mandal BB; Park SH; Marchant JK; Omenetto FG; Kaplan DL Biomaterials; 2010 Dec; 31(34):8953-63. PubMed ID: 20801503 [TBL] [Abstract][Full Text] [Related]
6. Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells. Gosselin EA; Torregrosa T; Ghezzi CE; Mendelsohn AC; Gomes R; Funderburgh JL; Kaplan DL J Tissue Eng Regen Med; 2018 Jan; 12(1):285-295. PubMed ID: 28600807 [TBL] [Abstract][Full Text] [Related]
7. Bio-fabrication of stem-cell-incorporated corneal epithelial and stromal equivalents from silk fibroin and gelatin-based biomaterial for canine corneal regeneration. Torsahakul C; Israsena N; Khramchantuk S; Ratanavaraporn J; Dhitavat S; Rodprasert W; Nantavisai S; Sawangmake C PLoS One; 2022; 17(2):e0263141. PubMed ID: 35120168 [TBL] [Abstract][Full Text] [Related]
8. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Du Y; Sundarraj N; Funderburgh ML; Harvey SA; Birk DE; Funderburgh JL Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5038-45. PubMed ID: 17962455 [TBL] [Abstract][Full Text] [Related]
9. The effect of growth factor supplementation on corneal stromal cell phenotype in vitro using a serum-free media. Lynch AP; O'Sullivan F; Ahearne M Exp Eye Res; 2016 Oct; 151():26-37. PubMed ID: 27456135 [TBL] [Abstract][Full Text] [Related]
10. Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates. Wu J; Du Y; Mann MM; Yang E; Funderburgh JL; Wagner WR Tissue Eng Part A; 2013 Sep; 19(17-18):2063-75. PubMed ID: 23557404 [TBL] [Abstract][Full Text] [Related]
11. A Novel Tissue-Engineered Corneal Stromal Equivalent Based on Amniotic Membrane and Keratocytes. Che X; Wu H; Jia C; Sun H; Ou S; Wang J; Jeyalatha MV; He X; Yu J; Zuo C; Liu Z; Li W Invest Ophthalmol Vis Sci; 2019 Feb; 60(2):517-527. PubMed ID: 30707753 [TBL] [Abstract][Full Text] [Related]
12. Response of human corneal fibroblasts on silk film surface patterns. Gil ES; Park SH; Marchant J; Omenetto F; Kaplan DL Macromol Biosci; 2010 Jun; 10(6):664-73. PubMed ID: 20301120 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes. Barbaro V; Ferrari S; Fasolo A; Ponzin D; Di Iorio E Mol Vis; 2009 Oct; 15():2084-93. PubMed ID: 19862337 [TBL] [Abstract][Full Text] [Related]
14. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents. Mukhey D; Phillips JB; Daniels JT; Kureshi AK Acta Biomater; 2018 Feb; 67():229-237. PubMed ID: 29208552 [TBL] [Abstract][Full Text] [Related]
15. The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells. Wu J; Du Y; Watkins SC; Funderburgh JL; Wagner WR Biomaterials; 2012 Feb; 33(5):1343-52. PubMed ID: 22078813 [TBL] [Abstract][Full Text] [Related]
16. Adipose-derived stem cells differentiate to keratocytes in vitro. Du Y; Roh DS; Funderburgh ML; Mann MM; Marra KG; Rubin JP; Li X; Funderburgh JL Mol Vis; 2010 Dec; 16():2680-9. PubMed ID: 21179234 [TBL] [Abstract][Full Text] [Related]
17. Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. Ghosh A; Bera AK; Singh V; Basu S; Pati F Biomater Adv; 2024 Dec; 165():214007. PubMed ID: 39216318 [TBL] [Abstract][Full Text] [Related]