BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28099525)

  • 1. Polyethylene Glycol Camouflaged Earthworm Hemoglobin.
    Jani VP; Jelvani A; Moges S; Nacharaju P; Roche C; Dantsker D; Palmer A; Friedman JM; Cabrales P
    PLoS One; 2017; 12(1):e0170041. PubMed ID: 28099525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen delivery during extreme anemia with ultra-pure earthworm hemoglobin.
    Elmer J; Palmer AF; Cabrales P
    Life Sci; 2012 Oct; 91(17-18):852-9. PubMed ID: 22982347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypervolemic infusion of Lumbricus terrestris erythrocruorin purified by tangential-flow filtration.
    Elmer J; Zorc K; Rameez S; Zhou Y; Cabrales P; Palmer AF
    Transfusion; 2012 Aug; 52(8):1729-40. PubMed ID: 22304397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the lyophilization of
    Dowd S; Sharo C; Abdulmalik O; Elmer J
    Artif Cells Nanomed Biotechnol; 2024 Dec; 52(1):291-299. PubMed ID: 38733371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resuscitation with polyethylene glycol-modified human hemoglobin improves microcirculatory blood flow and tissue oxygenation after hemorrhagic shock in awake hamsters.
    Wettstein R; Tsai AG; Erni D; Winslow RM; Intaglietta M
    Crit Care Med; 2003 Jun; 31(6):1824-30. PubMed ID: 12794426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of polyethylene glycol conjugated bovine hemoglobin in both top-load and exchange transfusion rat models.
    Conover CD; Linberg R; Gilbert CW; Shum KL; Shorr RG
    Artif Organs; 1997 Oct; 21(10):1066-75. PubMed ID: 9335363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pegylated hamster red blood cells on microcirculation.
    Chen PC; Huang W; Stassinopoulos A; Cheung AT
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(4):295-309. PubMed ID: 18649167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequencing of the Lumbricus terrestris genome reveals degeneracy in its erythrocruorin genes.
    Dowd S; Lagalante L; Rahlfs J; Sharo C; Opulente D; Lagalante A; Elmer J
    Biochimie; 2024 Apr; 219():130-141. PubMed ID: 37981225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ability of polyethylene glycol conjugated bovine hemoglobin (PEG-Hb) to adequately deliver oxygen in both exchange transfusion and top-loaded rat models.
    Conover CD; Linberg R; Shum KL; Shorr RG
    Artif Cells Blood Substit Immobil Biotechnol; 1999 Mar; 27(2):93-107. PubMed ID: 10092932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of polyethylene-glycol-polylactide nano-dimension artificial red blood cells in maintaining systemic hemoglobin levels and prevention of methemoglobin formation.
    Chang TM; Powanda D; Yu WP
    Artif Cells Blood Substit Immobil Biotechnol; 2003 Aug; 31(3):231-47. PubMed ID: 12906306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin encapsulated poly(ethylene glycol) surface conjugated vesicles attenuate vasoactivity of cell-free hemoglobin.
    Cabrales P; Rameez S; Palmer AF
    Curr Drug Discov Technol; 2012 Sep; 9(3):224-34. PubMed ID: 22564169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacodynamic study of polyethylene glycol conjugated bovine hemoglobin (PEG-bHb) in rats.
    Bi Z; He X; Zhang X; Jiang Y; Zhao K; Liu Q
    Artif Cells Blood Substit Immobil Biotechnol; 2004 May; 32(2):173-87. PubMed ID: 15274427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of polyethylene glycol conjugation on bovine hemoglobin's circulatory half-life and renal effects in a rabbit top-loaded transfusion model.
    Conover CD; Gilbert CW; Shum KL; Shorr RG
    Artif Organs; 1997 Aug; 21(8):907-15. PubMed ID: 9247180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme hemodilution with PEG-hemoglobin vs. PEG-albumin.
    Cabrales P; Tsai AG; Winslow RM; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2392-400. PubMed ID: 16024576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red cell substitutes from hemoglobin--do we start all over again?
    Kluger R
    Curr Opin Chem Biol; 2010 Aug; 14(4):538-43. PubMed ID: 20392662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving microcirculation is more effective than substitution of red blood cells to correct metabolic disorder in experimental hemorrhagic shock.
    Wettstein R; Tsai AG; Erni D; Lukyanov AN; Torchilin VP; Intaglietta M
    Shock; 2004 Mar; 21(3):235-40. PubMed ID: 14770036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions.
    Tsai AG; Cabrales P; Intaglietta M
    Transfusion; 2004 Nov; 44(11):1626-34. PubMed ID: 15504169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue oxidative metabolism after extreme hemodilution with PEG-conjugated hemoglobin.
    Cabrales P; Meng F; Acharya SA
    J Appl Physiol (1985); 2010 Dec; 109(6):1852-9. PubMed ID: 20813980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical Properties of Lumbricus terrestris Erythrocruorin and Its Potential Use as a Red Blood Cell Substitute.
    Elmer J; Palmer AF
    J Funct Biomater; 2012 Jan; 3(1):49-60. PubMed ID: 24956515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of hemoglobin vesicles with poly(ethylene glycol) and effects on aggregation, viscosity, and blood flow during 90% exchange transfusion in anesthetized rats.
    Sakai H; Takeoka S; Park SI; Kose T; Nishide H; Izumi Y; Yoshizu A; Kobayashi K; Tsuchida E
    Bioconjug Chem; 1997; 8(1):23-30. PubMed ID: 9026031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.