These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 28100095)
1. Shoulder kinetics during start-up and propulsion with a manual wheelchair within the initial phase of uninstructed training. Hybois S; Siegel A; Bascou J; Eydieux N; Vaslin P; Pillet H; Fodé P; Sauret C Disabil Rehabil Assist Technol; 2018 Jan; 13(1):40-46. PubMed ID: 28100095 [TBL] [Abstract][Full Text] [Related]
2. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389 [TBL] [Abstract][Full Text] [Related]
3. Changes in wheelchair biomechanics within the first 120 minutes of practice: spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability. Eydieux N; Hybois S; Siegel A; Bascou J; Vaslin P; Pillet H; Fodé P; Sauret C Disabil Rehabil Assist Technol; 2020 Apr; 15(3):305-313. PubMed ID: 30786787 [No Abstract] [Full Text] [Related]
4. Exploration of shoulder load during hand-rim wheelchair start-up with and without power-assisted propulsion in experienced wheelchair users. Kloosterman MG; Buurke JH; Schaake L; Van der Woude LH; Rietman JS Clin Biomech (Bristol); 2016 May; 34():1-6. PubMed ID: 26999794 [TBL] [Abstract][Full Text] [Related]
5. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion. Jayaraman C; Beck CL; Sosnoff JJ J Biomech; 2015 Nov; 48(14):3937-44. PubMed ID: 26472307 [TBL] [Abstract][Full Text] [Related]
7. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair. Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457 [TBL] [Abstract][Full Text] [Related]
8. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics. Symonds A; Barbareschi G; Taylor S; Holloway C Disabil Rehabil Assist Technol; 2018 Jan; 13(1):47-53. PubMed ID: 28102100 [TBL] [Abstract][Full Text] [Related]
9. Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion. Hybois S; Puchaud P; Bourgain M; Lombart A; Bascou J; Lavaste F; Fodé P; Pillet H; Sauret C Med Eng Phys; 2019 Jul; 69():153-160. PubMed ID: 31221514 [TBL] [Abstract][Full Text] [Related]
10. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective. Vegter RJ; de Groot S; Lamoth CJ; Veeger DH; van der Woude LH IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):104-13. PubMed ID: 24122567 [TBL] [Abstract][Full Text] [Related]
11. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs. Briley SJ; Vegter RJK; Tolfrey VL; Mason BS J Biomech; 2020 May; 104():109725. PubMed ID: 32173030 [TBL] [Abstract][Full Text] [Related]
12. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia. Haubert LL; Mulroy SJ; Requejo PS; Maneekobkunwong S; Gronley JK; Rankin JW; Rodriguez D; Hong K J Spinal Cord Med; 2020 Sep; 43(5):594-606. PubMed ID: 30768378 [No Abstract] [Full Text] [Related]
13. Adaptations in physiology and propulsion techniques during the initial phase of learning manual wheelchair propulsion. de Groot S; Veeger HE; Hollander AP; van der Woude LH Am J Phys Med Rehabil; 2003 Jul; 82(7):504-10. PubMed ID: 12819537 [TBL] [Abstract][Full Text] [Related]
15. Variability of peak shoulder force during wheelchair propulsion in manual wheelchair users with and without shoulder pain. Moon Y; Jayaraman C; Hsu IM; Rice IM; Hsiao-Wecksler ET; Sosnoff JJ Clin Biomech (Bristol); 2013; 28(9-10):967-72. PubMed ID: 24210512 [TBL] [Abstract][Full Text] [Related]
16. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia. Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111 [TBL] [Abstract][Full Text] [Related]
17. A comparison of glenohumeral joint kinematics and muscle activation during standard and geared manual wheelchair mobility. Slavens BA; Jahanian O; Schnorenberg AJ; Hsiao-Wecksler ET Med Eng Phys; 2019 Aug; 70():1-8. PubMed ID: 31285137 [TBL] [Abstract][Full Text] [Related]
18. Changes in propulsion technique and shoulder complex loading following low-intensity wheelchair practice in novices. Leving MT; Vegter RJK; de Vries WHK; de Groot S; van der Woude LHV PLoS One; 2018; 13(11):e0207291. PubMed ID: 30412627 [TBL] [Abstract][Full Text] [Related]
19. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion. Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS Clin Biomech (Bristol); 2012 Mar; 27(3):255-62. PubMed ID: 22071430 [TBL] [Abstract][Full Text] [Related]
20. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study. Morgan KA; Tucker SM; Klaesner JW; Engsberg JR J Spinal Cord Med; 2017 May; 40(3):304-315. PubMed ID: 26674751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]