These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
819 related articles for article (PubMed ID: 28100173)
1. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants. Yuan F; Yu X; Dong D; Yang Q; Fu X; Zhu S; Zhu D BMC Plant Biol; 2017 Jan; 17(1):16. PubMed ID: 28100173 [TBL] [Abstract][Full Text] [Related]
2. Quantitative proteomic analyses of two soybean low phytic acid mutants to identify the genes associated with seed field emergence. Yu X; Jin H; Fu X; Yang Q; Yuan F BMC Plant Biol; 2019 Dec; 19(1):569. PubMed ID: 31856712 [TBL] [Abstract][Full Text] [Related]
3. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Yuan FJ; Zhao HJ; Ren XL; Zhu SL; Fu XJ; Shu QY Theor Appl Genet; 2007 Nov; 115(7):945-57. PubMed ID: 17701395 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines. Redekar NR; Biyashev RM; Jensen RV; Helm RF; Grabau EA; Maroof MA BMC Genomics; 2015 Dec; 16():1074. PubMed ID: 26678836 [TBL] [Abstract][Full Text] [Related]
5. Stability of the Metabolite Signature Resulting from the MIPS1 Mutation in Low Phytic Acid Soybean ( Glycine max L. Merr.) Mutants upon Cross-Breeding. Goßner S; Yuan F; Zhou C; Tan Y; Shu Q; Engel KH J Agric Food Chem; 2019 May; 67(17):5043-5052. PubMed ID: 30977368 [TBL] [Abstract][Full Text] [Related]
6. Identification of genes associated with the increased number of four-seed pods in soybean (Glycine max L.) using transcriptome analysis. Liu ZZ; Yao D; Zhang J; Li ZL; Ma J; Liu SY; Qu J; Guan SY; Wang DD; Pan LD; Wang D; Wang PW Genet Mol Res; 2015 Dec; 14(4):18895-912. PubMed ID: 26782540 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis identifies differentially expressed genes in the progenies of a cross between two low phytic acid soybean mutants. Jin H; Yu X; Yang Q; Fu X; Yuan F Sci Rep; 2021 Apr; 11(1):8740. PubMed ID: 33888781 [TBL] [Abstract][Full Text] [Related]
8. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. Lambirth KC; Whaley AM; Blakley IC; Schlueter JA; Bost KL; Loraine AE; Piller KJ BMC Biotechnol; 2015 Oct; 15():89. PubMed ID: 26427366 [TBL] [Abstract][Full Text] [Related]
9. A seed germination transcriptomic study contrasting two soybean genotypes that differ in terms of their tolerance to the deleterious impacts of elevated temperatures during seed fill. Gillman JD; Biever JJ; Ye S; Spollen WG; Givan SA; Lyu Z; Joshi T; Smith JR; Fritschi FB BMC Res Notes; 2019 Aug; 12(1):522. PubMed ID: 31426836 [TBL] [Abstract][Full Text] [Related]
10. Metabolite Profiling of Soybean Seed Extracts from Near-Isogenic Low and Normal Phytate Lines Using Orthogonal Separation Strategies. Jervis J; Kastl C; Hildreth SB; Biyashev R; Grabau EA; Saghai-Maroof MA; Helm RF J Agric Food Chem; 2015 Nov; 63(44):9879-87. PubMed ID: 26487475 [TBL] [Abstract][Full Text] [Related]
11. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Nunes AC; Vianna GR; Cuneo F; Amaya-Farfán J; de Capdeville G; Rech EL; Aragão FJ Planta; 2006 Jun; 224(1):125-32. PubMed ID: 16395584 [TBL] [Abstract][Full Text] [Related]
12. Genetic interactions regulating seed phytate and oligosaccharides in soybean (Glycine max L.). Redekar NR; Glover NM; Biyashev RM; Ha BK; Raboy V; Maroof MAS PLoS One; 2020; 15(6):e0235120. PubMed ID: 32584851 [TBL] [Abstract][Full Text] [Related]
13. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Meng Y; Chen F; Shuai H; Luo X; Ding J; Tang S; Xu S; Liu J; Liu W; Du J; Liu J; Yang F; Sun X; Yong T; Wang X; Feng Y; Shu K; Yang W Sci Rep; 2016 Feb; 6():22073. PubMed ID: 26902640 [TBL] [Abstract][Full Text] [Related]
15. RNA-Seq analysis reveals that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in curled-cotyledons mutant of soybean [Glycine max (L.) Merr]. Shi G; Huang F; Gong Y; Xu G; Yu J; Hu Z; Cai Q; Yu D BMC Genomics; 2014 Jun; 15(1):510. PubMed ID: 24952381 [TBL] [Abstract][Full Text] [Related]
16. Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean. Kumar A; Kumar V; Krishnan V; Hada A; Marathe A; C P; Jolly M; Sachdev A Sci Rep; 2019 May; 9(1):7744. PubMed ID: 31123331 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas9-Mediated Multiple Knockouts in Abscisic Acid Receptor Genes Reduced the Sensitivity to ABA during Soybean Seed Germination. Zhang Z; Wang W; Ali S; Luo X; Xie L Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555815 [TBL] [Abstract][Full Text] [Related]
18. Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Chiera JM; Finer JJ; Grabau EA Plant Mol Biol; 2004 Dec; 56(6):895-904. PubMed ID: 15821988 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis. Song Q; Cheng S; Chen Z; Nie G; Xu F; Zhang J; Zhou M; Zhang W; Liao Y; Ye J BMC Plant Biol; 2019 May; 19(1):199. PubMed ID: 31092208 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. He M; Zhu C; Dong K; Zhang T; Cheng Z; Li J; Yan Y BMC Plant Biol; 2015 Apr; 15():97. PubMed ID: 25888100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]