These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 28100450)
1. A 2-Oxoglutarate-Dependent Dioxygenase Mediates the Biosynthesis of Glucoraphasatin in Radish. Kakizaki T; Kitashiba H; Zou Z; Li F; Fukino N; Ohara T; Nishio T; Ishida M Plant Physiol; 2017 Mar; 173(3):1583-1593. PubMed ID: 28100450 [TBL] [Abstract][Full Text] [Related]
2. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development. Nugroho ABD; Han N; Pervitasari AN; Kim DH; Kim J Plant Mol Biol; 2020 Jan; 102(1-2):171-184. PubMed ID: 31792713 [TBL] [Abstract][Full Text] [Related]
3. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic and metabolic analyses revealed the modulatory effect of vernalization on glucosinolate metabolism in radish (Raphanus sativus L.). Nugroho ABD; Lee SW; Pervitasari AN; Moon H; Choi D; Kim J; Kim DH Sci Rep; 2021 Dec; 11(1):24023. PubMed ID: 34912010 [TBL] [Abstract][Full Text] [Related]
5. Large insertion in radish Endo R; Chikano H; Itabashi E; Kawasaki M; Ohara T; Kakizaki T Front Plant Sci; 2023; 14():1132302. PubMed ID: 37346118 [TBL] [Abstract][Full Text] [Related]
6. A Comparative Transcriptome and Metabolome Combined Analysis Reveals the Key Genes and Their Regulatory Model Responsible for Glucoraphasatin Accumulation in Radish Fleshy Taproots. Li X; Wang P; Wang J; Wang H; Liu T; Zhang X; Song J; Yang W; Wu C; Yang H; Liu L; Li X Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328374 [TBL] [Abstract][Full Text] [Related]
7. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources. Yi G; Lim S; Chae WB; Park JE; Park HR; Lee EJ; Huh JH J Agric Food Chem; 2016 Jan; 64(1):61-70. PubMed ID: 26672790 [TBL] [Abstract][Full Text] [Related]
8. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. Zou Z; Ishida M; Li F; Kakizaki T; Suzuki S; Kitashiba H; Nishio T PLoS One; 2013; 8(1):e53541. PubMed ID: 23308250 [TBL] [Abstract][Full Text] [Related]
9. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production. Araki R; Hasumi A; Nishizawa OI; Sasaki K; Kuwahara A; Sawada Y; Totoki Y; Toyoda A; Sakaki Y; Li Y; Saito K; Ogawa T; Hirai MY Plant Biotechnol J; 2013 Oct; 11(8):1017-27. PubMed ID: 23910994 [TBL] [Abstract][Full Text] [Related]
10. Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.). Ishida M; Kakizaki T; Morimitsu Y; Ohara T; Hatakeyama K; Yoshiaki H; Kohori J; Nishio T Theor Appl Genet; 2015 Oct; 128(10):2037-46. PubMed ID: 26152572 [TBL] [Abstract][Full Text] [Related]
11. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis. Wang J; Qiu Y; Wang X; Yue Z; Yang X; Chen X; Zhang X; Shen D; Wang H; Song J; He H; Li X Sci Rep; 2017 Nov; 7(1):16040. PubMed ID: 29167500 [TBL] [Abstract][Full Text] [Related]
12. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Kim YB; Li X; Kim SJ; Kim HH; Lee J; Kim H; Park SU Molecules; 2013 Jul; 18(7):8682-95. PubMed ID: 23881053 [TBL] [Abstract][Full Text] [Related]
13. Expression profiles of glucosinolate biosynthetic genes in turnip (Brassica rapa var. rapa) at different developmental stages and effect of transformed flavin-containing monooxygenase genes on hairy root glucosinolate content. Yang Y; Hu Y; Yue Y; Pu Y; Yin X; Duan Y; Huang A; Yang Y; Yang Y J Sci Food Agric; 2020 Feb; 100(3):1064-1071. PubMed ID: 31713870 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of glucosinolate production in hairy roots of green and red kale ( Cuong DM; Park SU; Park CH; Kim NS; Bong SJ; Lee SY Prep Biochem Biotechnol; 2019; 49(8):775-782. PubMed ID: 31124740 [TBL] [Abstract][Full Text] [Related]
15. Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing. Feng H; Xu L; Wang Y; Tang M; Zhu X; Zhang W; Sun X; Nie S; Muleke EM; Liu L Mol Genet Genomics; 2017 Oct; 292(5):1151-1163. PubMed ID: 28667404 [TBL] [Abstract][Full Text] [Related]
16. Characterization of RsMYB28 and RsMYB29 transcription factor genes in radish (Raphanus sativus L.). Luo XB; Liu Z; Xu L; Wang Y; Zhu XW; Zhang W; Chen W; Zhu YL; Su XJ; Everlyne M; Liu LW Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706769 [TBL] [Abstract][Full Text] [Related]
17. Brassinosteroids regulate glucosinolate biosynthesis in Arabidopsis thaliana. Lee JH; Lee J; Kim H; Chae WB; Kim SJ; Lim YP; Oh MH Physiol Plant; 2018 Aug; 163(4):450-458. PubMed ID: 29315590 [TBL] [Abstract][Full Text] [Related]
18. Engineering glucosinolates in plants: current knowledge and potential uses. Baskar V; Gururani MA; Yu JW; Park SW Appl Biochem Biotechnol; 2012 Nov; 168(6):1694-717. PubMed ID: 22983743 [TBL] [Abstract][Full Text] [Related]
20. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. Gao J; Li WB; Liu HF; Chen FB BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]