These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28100708)

  • 1. The Origin of Floral Organ Identity Quartets.
    Ruelens P; Zhang Z; van Mourik H; Maere S; Kaufmann K; Geuten K
    Plant Cell; 2017 Feb; 29(2):229-242. PubMed ID: 28100708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower.
    Melzer R; Wang YQ; Theissen G
    Semin Cell Dev Biol; 2010 Feb; 21(1):118-28. PubMed ID: 19944177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flower development and evolution: gene duplication, diversification and redeployment.
    Irish VF; Litt A
    Curr Opin Genet Dev; 2005 Aug; 15(4):454-60. PubMed ID: 15964755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum.
    Sun W; Huang W; Li Z; Song C; Liu D; Liu Y; Hayward A; Liu Y; Huang H; Wang Y
    Ann Bot; 2014 Mar; 113(4):653-68. PubMed ID: 24532606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MADS-box genes and floral development: the dark side.
    Heijmans K; Morel P; Vandenbussche M
    J Exp Bot; 2012 Sep; 63(15):5397-404. PubMed ID: 22915743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution.
    Melzer R; Härter A; Rümpler F; Kim S; Soltis PS; Soltis DE; Theißen G
    Ann Bot; 2014 Nov; 114(7):1431-43. PubMed ID: 24902716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification.
    Yockteng R; Almeida AM; Morioka K; Alvarez-Buylla ER; Specht CD
    Mol Biol Evol; 2013 Nov; 30(11):2401-22. PubMed ID: 23938867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.
    Hu Y; Liang W; Yin C; Yang X; Ping B; Li A; Jia R; Chen M; Luo Z; Cai Q; Zhao X; Zhang D; Yuan Z
    Mol Plant; 2015 Sep; 8(9):1366-84. PubMed ID: 25917758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'.
    Wang YQ; Melzer R; Theissen G
    Plant J; 2010 Oct; 64(2):177-90. PubMed ID: 21070403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system.
    Dirks-Mulder A; Butôt R; van Schaik P; Wijnands JW; van den Berg R; Krol L; Doebar S; van Kooperen K; de Boer H; Kramer EM; Smets EF; Vos RA; Vrijdaghs A; Gravendeel B
    BMC Evol Biol; 2017 Mar; 17(1):89. PubMed ID: 28335712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history.
    Zahn LM; Kong H; Leebens-Mack JH; Kim S; Soltis PS; Landherr LL; Soltis DE; Depamphilis CW; Ma H
    Genetics; 2005 Apr; 169(4):2209-23. PubMed ID: 15687268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms.
    Zhang P; Tan HT; Pwee KH; Kumar PP
    Plant J; 2004 Feb; 37(4):566-77. PubMed ID: 14756763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function and diversification of MADS-box genes in rice.
    Yamaguchi T; Hirano HY
    ScientificWorldJournal; 2006 Jul; 6():1923-32. PubMed ID: 17205197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiquity and evolution of the MADS-box gene family controlling flower development in plants.
    Nam J; dePamphilis CW; Ma H; Nei M
    Mol Biol Evol; 2003 Sep; 20(9):1435-47. PubMed ID: 12777513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in Chinese lantern development in Physalis.
    Zhao J; Tian Y; Zhang JS; Zhao M; Gong P; Riss S; Saedler R; He C
    Plant Cell; 2013 Jun; 25(6):2002-21. PubMed ID: 23792370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution.
    Theißen G; Melzer R; Rümpler F
    Development; 2016 Sep; 143(18):3259-71. PubMed ID: 27624831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa).
    Cui R; Han J; Zhao S; Su K; Wu F; Du X; Xu Q; Chong K; Theissen G; Meng Z
    Plant J; 2010 Mar; 61(5):767-81. PubMed ID: 20003164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and Characterization of MIKC
    Ren L; Sun H; Dai S; Feng S; Qiao K; Wang J; Gong S; Zhou A
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502271
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.