These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 28101428)
61. Association of Choroidal Neovascularization and Central Serous Chorioretinopathy With Optical Coherence Tomography Angiography. Bonini Filho MA; de Carlo TE; Ferrara D; Adhi M; Baumal CR; Witkin AJ; Reichel E; Duker JS; Waheed NK JAMA Ophthalmol; 2015 Aug; 133(8):899-906. PubMed ID: 25996386 [TBL] [Abstract][Full Text] [Related]
63. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging. Chen W; You J; Gu X; Du C; Pan Y Sci Rep; 2016 Dec; 6():38786. PubMed ID: 27934907 [TBL] [Abstract][Full Text] [Related]
64. Swept-Source Optical Coherence Tomography Angiography According to the Type of Choroidal Neovascularization. Yeo JH; Chung H; Kim JT J Clin Med; 2019 Aug; 8(9):. PubMed ID: 31443399 [TBL] [Abstract][Full Text] [Related]
68. Electrically tunable lens integrated with optical coherence tomography angiography for cerebral blood flow imaging in deep cortical layers in mice. Li Y; Tang P; Song S; Rakymzhan A; Wang RK Opt Lett; 2019 Oct; 44(20):5037-5040. PubMed ID: 31613257 [TBL] [Abstract][Full Text] [Related]
69. Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear. Park J; Carbajal EF; Chen X; Oghalai JS; Applegate BE Opt Lett; 2014 Nov; 39(21):6233-6. PubMed ID: 25361322 [TBL] [Abstract][Full Text] [Related]
70. High-speed OCT light sources and systems [Invited]. Klein T; Huber R Biomed Opt Express; 2017 Feb; 8(2):828-859. PubMed ID: 28270988 [TBL] [Abstract][Full Text] [Related]
71. Integrating a pressure sensor with an OCT handheld probe to facilitate imaging of microvascular information in skin tissue beds. Shi Y; Lu J; Le N; Wang RK Biomed Opt Express; 2022 Nov; 13(11):6153-6166. PubMed ID: 36733756 [TBL] [Abstract][Full Text] [Related]
72. High-speed, long-range and wide-field OCT for in vivo 3D imaging of the oral cavity achieved by a 600 kHz swept source laser. Shi Y; Liu J; Wang RK Biomed Opt Express; 2024 Jul; 15(7):4365-4380. PubMed ID: 39022551 [TBL] [Abstract][Full Text] [Related]
73. Simultaneous detection of cerebral blood perfusion and cerebral edema using swept-source optical coherence tomography. Liu J; Li Y; Yu Y; Yuan X; Lv H; Liu L; Zhao Y; Wang Y; Ma Z J Biophotonics; 2020 Feb; 13(2):e201960087. PubMed ID: 31702865 [TBL] [Abstract][Full Text] [Related]
74. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool? Zhu J; Merkle CW; Bernucci MT; Chong SP; Srinivasan VJ Appl Sci (Basel); 2017 Jul; 7(7):. PubMed ID: 30009045 [TBL] [Abstract][Full Text] [Related]
75. Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, MacDougall D; Farrell J; Brown J; Bance M; Adamson R Biomed Opt Express; 2016 Nov; 7(11):4621-4635. PubMed ID: 27896001 [TBL] [Abstract][Full Text] [Related]
76. Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues. Choi S; Sato K; Ota T; Nin F; Muramatsu S; Hibino H Biomed Opt Express; 2017 Feb; 8(2):608-621. PubMed ID: 28270971 [TBL] [Abstract][Full Text] [Related]
77. Comparative study of OCTA algorithms with a high-sensitivity multi-contrast Jones matrix OCT system for human skin imaging. Chen G; Wang W; Li Y Biomed Opt Express; 2022 Sep; 13(9):4718-4736. PubMed ID: 36187265 [TBL] [Abstract][Full Text] [Related]
78. Coherence properties of short cavity swept lasers. Johnson B; Atia W; Kuznetsov M; Goldberg BD; Whitney P; Flanders DC Biomed Opt Express; 2017 Feb; 8(2):1045-1055. PubMed ID: 28271002 [TBL] [Abstract][Full Text] [Related]