These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28101667)

  • 1. Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots.
    Balestrini R; Salvioli A; Dal Molin A; Novero M; Gabelli G; Paparelli E; Marroni F; Bonfante P
    Mycorrhiza; 2017 Jul; 27(5):417-430. PubMed ID: 28101667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3.
    Li HY; Yang GD; Shu HR; Yang YT; Ye BX; Nishida I; Zheng CC
    Plant Cell Physiol; 2006 Jan; 47(1):154-63. PubMed ID: 16326755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development.
    Gaude N; Bortfeld S; Duensing N; Lohse M; Krajinski F
    Plant J; 2012 Feb; 69(3):510-28. PubMed ID: 21978245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition.
    Karagiannidis N; Nikolaou N; Ipsilantis I; Zioziou E
    Mycorrhiza; 2007 Dec; 18(1):43-50. PubMed ID: 17987325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.
    Li M; Wang R; Tian H; Gao Y
    Mycorrhiza; 2018 Nov; 28(8):747-759. PubMed ID: 30251133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi.
    Gutjahr C; Sawers RJ; Marti G; Andrés-Hernández L; Yang SY; Casieri L; Angliker H; Oakeley EJ; Wolfender JL; Abreu-Goodger C; Paszkowski U
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6754-9. PubMed ID: 25947154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative RNA sequencing-based transcriptome profiling of ten grapevine rootstocks: shared and specific sets of genes respond to mycorrhizal symbiosis.
    Sportes A; Hériché M; Mounier A; Durney C; van Tuinen D; Trouvelot S; Wipf D; Courty PE
    Mycorrhiza; 2023 Nov; 33(5-6):369-385. PubMed ID: 37561219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.
    Baumgartner K; Smith RF; Bettiga L
    Mycorrhiza; 2005 Mar; 15(2):111-9. PubMed ID: 15133724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.
    Tian H; Yuan X; Duan J; Li W; Zhai B; Gao Y
    PLoS One; 2017; 12(2):e0172154. PubMed ID: 28207830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of Vitis vinifera cv. Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds.
    Velásquez A; Vega-Celedón P; Fiaschi G; Agnolucci M; Avio L; Giovannetti M; D'Onofrio C; Seeger M
    Mycorrhiza; 2020 Jan; 30(1):161-170. PubMed ID: 31974639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation.
    Deguchi Y; Banba M; Shimoda Y; Chechetka SA; Suzuri R; Okusako Y; Ooki Y; Toyokura K; Suzuki A; Uchiumi T; Higashi S; Abe M; Kouchi H; Izui K; Hata S
    DNA Res; 2007 Jun; 14(3):117-33. PubMed ID: 17634281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species.
    Cangahuala-Inocente GC; Da Silva MF; Johnson JM; Manga A; van Tuinen D; Henry C; Lovato PE; Dumas-Gaudot E
    Mycorrhiza; 2011 Aug; 21(6):473-493. PubMed ID: 21210159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue.
    Velásquez A; Valenzuela M; Carvajal M; Fiaschi G; Avio L; Giovannetti M; D'Onofrio C; Seeger M
    Plant Physiol Biochem; 2020 Oct; 155():437-443. PubMed ID: 32814280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep sequencing-based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi.
    Zhao X; Zhang J; Chen C; Yang J; Zhu H; Liu M; Lv F
    BMC Genomics; 2014 Aug; 15(1):747. PubMed ID: 25174959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional induction of two phosphate transporter 1 genes and enhanced root branching in grape plants inoculated with Funneliformis mosseae.
    Valat L; Deglène-Benbrahim L; Kendel M; Hussenet R; Le Jeune C; Schellenbaum P; Maillot P
    Mycorrhiza; 2018 Feb; 28(2):179-185. PubMed ID: 29167981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.
    Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K
    Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L.
    Rapparini F; Llusià J; Peñuelas J
    Plant Biol (Stuttg); 2008 Jan; 10(1):108-22. PubMed ID: 18211551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization].
    Jing XX; Su ZZ; Xing HE; Wang FY; Shi ZY; Liu XQ
    Huan Jing Ke Xue; 2016 Aug; 37(8):3208-3215. PubMed ID: 29964752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycorrhiza alters the profile of root hairs in trifoliate orange.
    Wu QS; Liu CY; Zhang DJ; Zou YN; He XH; Wu QH
    Mycorrhiza; 2016 Apr; 26(3):237-47. PubMed ID: 26499883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.
    Poosakkannu A; Nissinen R; Kytöviita MM
    Mycorrhiza; 2017 Nov; 27(8):801-810. PubMed ID: 28812152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.