BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28101703)

  • 1. Differences in Cortical Sources of the Event-Related P3 Potential Between Young and Old Participants Indicate Frontal Compensation.
    van Dinteren R; Huster RJ; Jongsma MLA; Kessels RPC; Arns M
    Brain Topogr; 2018 Jan; 31(1):35-46. PubMed ID: 28101703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontal P3 event-related potential is related to brain glutamine/glutamate ratio measured in vivo.
    Hall MH; Jensen JE; Du F; Smoller JW; O'Connor L; Spencer KM; Öngür D
    Neuroimage; 2015 May; 111():186-91. PubMed ID: 25687595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cognitive function, P3a/P3b brain potentials, and cortical thickness in aging.
    Fjell AM; Walhovd KB; Fischl B; Reinvang I
    Hum Brain Mapp; 2007 Nov; 28(11):1098-116. PubMed ID: 17370342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simultaneous ERP/fMRI investigation of the P300 aging effect.
    O'Connell RG; Balsters JH; Kilcullen SM; Campbell W; Bokde AW; Lai R; Upton N; Robertson IH
    Neurobiol Aging; 2012 Oct; 33(10):2448-61. PubMed ID: 22277263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related spatiotemporal reorganization during response inhibition.
    Hong X; Sun J; Bengson JJ; Tong S
    Int J Psychophysiol; 2014 Sep; 93(3):371-80. PubMed ID: 24905017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related differences in novelty and target processing among cognitively high performing adults.
    Daffner KR; Ryan KK; Williams DM; Budson AE; Rentz DM; Scinto LF; Holcomb PJ
    Neurobiol Aging; 2005 Oct; 26(9):1283-95. PubMed ID: 16054727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of normal aging on sources of standard N1, target N1 and target P300 auditory event-related brain potentials revealed by low resolution electromagnetic tomography (LORETA).
    Anderer P; Pascual-Marqui RD; Semlitsch HV; Saletu B
    Electroencephalogr Clin Neurophysiol; 1998 Mar; 108(2):160-74. PubMed ID: 9566629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total sleep deprivation and novelty processing: implications for frontal lobe functioning.
    Gosselin A; De Koninck J; Campbell KB
    Clin Neurophysiol; 2005 Jan; 116(1):211-22. PubMed ID: 15589199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cortical generators of P3a and P3b: a LORETA study.
    Volpe U; Mucci A; Bucci P; Merlotti E; Galderisi S; Maj M
    Brain Res Bull; 2007 Jul; 73(4-6):220-30. PubMed ID: 17562387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of age-related changes in the scalp distribution of P3b.
    Friedman D; Kazmerski V; Fabiani M
    Electroencephalogr Clin Neurophysiol; 1997 Nov; 104(6):498-513. PubMed ID: 9402892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual Selective Attention P300 Source in Frontal-Parietal Lobe: ERP and fMRI Study.
    Zhang Q; Luo C; Ngetich R; Zhang J; Jin Z; Li L
    Brain Topogr; 2022 Nov; 35(5-6):636-650. PubMed ID: 36178537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suspense and surprise: on the relationship between expectancies and P3.
    Verleger R; Jaskowski P; Wauschkuhn B
    Psychophysiology; 1994 Jul; 31(4):359-69. PubMed ID: 10690916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targets and non-targets in the aging brain: A go/nogo event-related potential study.
    Vallesi A
    Neurosci Lett; 2011 Jan; 487(3):313-7. PubMed ID: 20974222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the generators of the scalp recorded visuo-verbal P300 using cortically constrained source localization.
    Moores KA; Clark CR; Hadfield JL; Brown GC; Taylor DJ; Fitzgibbon SP; Lewis AC; Weber DL; Greenblatt R
    Hum Brain Mapp; 2003 Jan; 18(1):53-77. PubMed ID: 12454912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of motor activity on intracerebral ERPs: P3 latency variability in modified auditory odd-ball paradigms involving a motor task.
    Kanovský P; Streitová H; Klajblová H; Bares M; Daniel P; Rektor I
    Neurophysiol Clin; 2003 Sep; 33(4):159-68. PubMed ID: 14519543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A parietal-to-frontal shift in the P300 is associated with compensation of tactile discrimination deficits in late middle-aged adults.
    Reuter EM; Voelcker-Rehage C; Vieluf S; Winneke AH; Godde B
    Psychophysiology; 2013 Jun; 50(6):583-93. PubMed ID: 23517339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-trial P3 amplitude and latency informed event-related fMRI models yield different BOLD response patterns to a target detection task.
    Warbrick T; Mobascher A; Brinkmeyer J; Musso F; Richter N; Stoecker T; Fink GR; Shah NJ; Winterer G
    Neuroimage; 2009 Oct; 47(4):1532-44. PubMed ID: 19505583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P300 and neuropsychological tests as measures of aging: scalp topography and cognitive changes.
    Fjell AM; Walhovd KB
    Brain Topogr; 2001; 14(1):25-40. PubMed ID: 11599530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noradrenergic and cholinergic modulation of late ERP responses to deviant stimuli.
    Brown SB; van der Wee NJ; van Noorden MS; Giltay EJ; Nieuwenhuis S
    Psychophysiology; 2015 Dec; 52(12):1620-31. PubMed ID: 26352794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related frontoparietal changes during the control of bottom-up and top-down attention: an ERP study.
    Li L; Gratton C; Fabiani M; Knight RT
    Neurobiol Aging; 2013 Feb; 34(2):477-88. PubMed ID: 22459599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.