These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 28101807)
1. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts. Zhang Y; Wang C; Wang L; Yang R; Hou P; Liu J J Ind Microbiol Biotechnol; 2017 Mar; 44(3):453-464. PubMed ID: 28101807 [TBL] [Abstract][Full Text] [Related]
2. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
4. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417 [TBL] [Abstract][Full Text] [Related]
5. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
6. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Choudhary J; Singh S; Nain L J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231 [TBL] [Abstract][Full Text] [Related]
7. Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Olsson L; Soerensen HR; Dam BP; Christensen H; Krogh KM; Meyer AS Appl Biochem Biotechnol; 2006; 129-132():117-29. PubMed ID: 16915635 [TBL] [Abstract][Full Text] [Related]
8. Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. Olofsson K; Wiman M; Lidén G J Biotechnol; 2010 Jan; 145(2):168-75. PubMed ID: 19900494 [TBL] [Abstract][Full Text] [Related]
9. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Karagöz P; Özkan M Bioresour Technol; 2014 Apr; 158():286-93. PubMed ID: 24614063 [TBL] [Abstract][Full Text] [Related]
10. Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58. Yu H; Guo J; Chen Y; Fu G; Li B; Guo X; Xiao D Bioresour Technol; 2017 May; 232():168-175. PubMed ID: 28231534 [TBL] [Abstract][Full Text] [Related]
11. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK; Um Y; Woo HM; Kim KH; Lee SM Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [TBL] [Abstract][Full Text] [Related]
12. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Zhang J; Lynd LR Biotechnol Bioeng; 2010 Oct; 107(2):235-44. PubMed ID: 20506488 [TBL] [Abstract][Full Text] [Related]
13. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. Chen Y J Ind Microbiol Biotechnol; 2011 May; 38(5):581-97. PubMed ID: 21104106 [TBL] [Abstract][Full Text] [Related]
14. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
15. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823 [TBL] [Abstract][Full Text] [Related]
16. Optimization of ethanol production from microfluidized wheat straw by response surface methodology. Turhan O; Isci A; Mert B; Sakiyan O; Donmez S Prep Biochem Biotechnol; 2015; 45(8):785-95. PubMed ID: 25181638 [TBL] [Abstract][Full Text] [Related]
17. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Huang S; Liu T; Peng B; Geng A Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665 [TBL] [Abstract][Full Text] [Related]
18. Steam pretreatment and fermentation of the straw material "Paja Brava" using simultaneous saccharification and co-fermentation. Carrasco C; Baudel H; Peñarrieta M; Solano C; Tejeda L; Roslander C; Galbe M; Lidén G J Biosci Bioeng; 2011 Feb; 111(2):167-74. PubMed ID: 21081285 [TBL] [Abstract][Full Text] [Related]
19. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077. Bhatia L; Johri S Indian J Exp Biol; 2015 Dec; 53(12):819-27. PubMed ID: 26742327 [TBL] [Abstract][Full Text] [Related]
20. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. Erdei B; Frankó B; Galbe M; Zacchi G J Biotechnol; 2013 Mar; 164(1):50-8. PubMed ID: 23262129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]