BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28101936)

  • 1. Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress.
    Zhang HY; Lei G; Zhou HW; He C; Liao JL; Huang YJ
    Proteomics; 2017 Mar; 17(5):. PubMed ID: 28101936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage.
    Liao JL; Zhou HW; Peng Q; Zhong PA; Zhang HY; He C; Huang YJ
    BMC Genomics; 2015 Jan; 16(1):18. PubMed ID: 25928563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress.
    Liao JL; Zhou HW; Zhang HY; Zhong PA; Huang YJ
    J Exp Bot; 2014 Feb; 65(2):655-71. PubMed ID: 24376254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality.
    Shi W; Muthurajan R; Rahman H; Selvam J; Peng S; Zou Y; Jagadish KSV
    New Phytol; 2013 Feb; 197(3):825-837. PubMed ID: 23252708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential proteomic analysis of soybean anthers by iTRAQ under high-temperature stress.
    Li J; Nadeem M; Chen L; Wang M; Wan M; Qiu L; Wang X
    J Proteomics; 2020 Oct; 229():103968. PubMed ID: 32911126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gel-free/label-free proteomic analysis of developing rice grains under heat stress.
    Timabud T; Yin X; Pongdontri P; Komatsu S
    J Proteomics; 2016 Feb; 133():1-19. PubMed ID: 26655677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of candidate genes related to rice grain weight under high-temperature stress.
    Liao JL; Zhang HY; Liu JB; Zhong PA; Huang YJ
    Plant Sci; 2012 Nov; 196():32-43. PubMed ID: 23017897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iTRAQ-Based Protein Profiling and Biochemical Analysis of Two Contrasting Rice Genotypes Revealed Their Differential Responses to Salt Stress.
    Hussain S; Zhu C; Bai Z; Huang J; Zhu L; Cao X; Nanda S; Hussain S; Riaz A; Liang Q; Wang L; Li Y; Jin Q; Zhang J
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High night temperature effects on wheat and rice: Current status and way forward.
    Impa SM; Raju B; Hein NT; Sandhu J; Prasad PVV; Walia H; Jagadish SVK
    Plant Cell Environ; 2021 Jul; 44(7):2049-2065. PubMed ID: 33576033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice.
    Xu J; Misra G; Sreenivasulu N; Henry A
    Plant Cell Environ; 2021 Jul; 44(7):2245-2261. PubMed ID: 33715176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice yield and quality in response to daytime and nighttime temperature increase - A meta-analysis perspective.
    Su Q; Rohila JS; Ranganathan S; Karthikeyan R
    Sci Total Environ; 2023 Nov; 898():165256. PubMed ID: 37423281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic changes in rice leaves grown under open field high temperature stress conditions.
    Das S; Krishnan P; Mishra V; Kumar R; Ramakrishnan B; Singh NK
    Mol Biol Rep; 2015 Nov; 42(11):1545-58. PubMed ID: 26323334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential proteomic response of rice (Oryza sativa) leaves exposed to high- and low-temperature stress.
    Gammulla CG; Pascovici D; Atwell BJ; Haynes PA
    Proteomics; 2011 Jul; 11(14):2839-50. PubMed ID: 21695689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.).
    Bahuguna RN; Solis CA; Shi W; Jagadish KS
    Physiol Plant; 2017 Jan; 159(1):59-73. PubMed ID: 27513992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Differential Protein Expression in Natural Selenium-Enriched and Non-Selenium-Enriched Rice Based on iTRAQ Quantitative Proteomics.
    Zeng R; Farooq MU; Wang L; Su Y; Zheng T; Ye X; Jia X; Zhu J
    Biomolecules; 2019 Mar; 9(4):. PubMed ID: 30935009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.
    Chen L; Huang Y; Xu M; Cheng Z; Zheng J
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29244752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi.
    Miyazaki M; Araki M; Okamura K; Ishibashi Y; Yuasa T; Iwaya-Inoue M
    J Plant Physiol; 2013 Dec; 170(18):1579-84. PubMed ID: 23910376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomic analysis of cold-responsive proteins in rice.
    Neilson KA; Mariani M; Haynes PA
    Proteomics; 2011 May; 11(9):1696-706. PubMed ID: 21433000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iTRAQ-Based Proteomic Analysis of Rice Grains.
    Baslam M; Kaneko K; Mitsui T
    Methods Mol Biol; 2020; 2139():405-414. PubMed ID: 32462602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomics analysis reveals the mechanism of fertility alternation of thermosensitive genic male sterile rice lines under low temperature inducement.
    Song L; Liu Z; Tong J; Xiao L; Ma H; Zhang H
    Proteomics; 2015 Jun; 15(11):1884-905. PubMed ID: 25641954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.