BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28101988)

  • 1. Toxicity assessment of zero valent iron nanoparticles on Artemia salina.
    Kumar D; Roy R; Parashar A; Raichur AM; Chandrasekaran N; Mukherjee A; Mukherjee A
    Environ Toxicol; 2017 May; 32(5):1617-1627. PubMed ID: 28101988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain.
    Bhuvaneshwari M; Kumar D; Roy R; Chakraborty S; Parashar A; Mukherjee A; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2017 Feb; 183():63-75. PubMed ID: 28024216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish.
    Chen PJ; Wu WL; Wu KC
    Water Res; 2013 Aug; 47(12):3899-909. PubMed ID: 23548565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity, uptake, and accumulation of nano and bulk cerium oxide particles in Artemia salina.
    Sugantharaj David EMD; Madurantakam Royam M; Rajamani Sekar SK; Manivannan B; Jalaja Soman S; Mukherjee A; Natarajan C
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24187-24200. PubMed ID: 28887611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y
    Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products.
    Yang CH; Kung TA; Chen PJ
    Environ Pollut; 2019 Sep; 252(Pt B):1920-1932. PubMed ID: 31227347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types.
    Yirsaw BD; Mayilswami S; Megharaj M; Chen Z; Naidu R
    Environ Sci Pollut Res Int; 2016 May; 23(10):9822-31. PubMed ID: 26856861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina.
    An HJ; Sarkheil M; Park HS; Yu IJ; Johari SA
    Comp Biochem Physiol C Toxicol Pharmacol; 2019 Apr; 218():62-69. PubMed ID: 30639249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of α-Fe
    Wang C; Jia H; Zhu L; Zhang H; Wang Y
    Sci Total Environ; 2017 Nov; 598():847-855. PubMed ID: 28458202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress in microbes after exposure to iron nanoparticles: analysis of aldehydes as oxidative damage products of lipids and proteins.
    Semerád J; Moeder M; Filip J; Pivokonský M; Filipová A; Cajthaml T
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33670-33682. PubMed ID: 31591687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity and trophic transfer of P25 TiO
    Bhuvaneshwari M; Thiagarajan V; Nemade P; Chandrasekaran N; Mukherjee A
    Environ Res; 2018 Jan; 160():39-46. PubMed ID: 28961468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity and accumulation of Copper oxide (CuO) nanoparticles in different life stages of Artemia salina.
    Madhav MR; David SEM; Kumar RSS; Swathy JS; Bhuvaneshwari M; Mukherjee A; Chandrasekaran N
    Environ Toxicol Pharmacol; 2017 Jun; 52():227-238. PubMed ID: 28454023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells.
    Keenan CR; Goth-Goldstein R; Lucas D; Sedlak DL
    Environ Sci Technol; 2009 Jun; 43(12):4555-60. PubMed ID: 19603676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species.
    Semerád J; Čvančarová M; Filip J; Kašlík J; Zlotá J; Soukupová J; Cajthaml T
    Chemosphere; 2018 Dec; 213():568-577. PubMed ID: 30268053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri.
    Saccà ML; Fajardo C; Martinez-Gomariz M; Costa G; Nande M; Martin M
    PLoS One; 2014; 9(2):e89677. PubMed ID: 24586957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean.
    Sun Y; Jing R; Zheng F; Zhang S; Jiao W; Wang F
    Chemosphere; 2019 Dec; 236():124336. PubMed ID: 31310976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa.
    Wang J; Fang Z; Cheng W; Tsang PE; Zhao D
    Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities.
    Lefevre E; Bossa N; Wiesner MR; Gunsch CK
    Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing ZnO nanoparticle ecotoxicity: linking time variable exposure to effects on different marine model organisms.
    Schiavo S; Oliviero M; Li J; Manzo S
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4871-4880. PubMed ID: 29199368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of nano-zero valent iron to freshwater and marine organisms.
    Keller AA; Garner K; Miller RJ; Lenihan HS
    PLoS One; 2012; 7(8):e43983. PubMed ID: 22952836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.