These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28102077)

  • 1. Boosting Hot-Electron Generation: Exciton Dissociation at the Order-Disorder Interfaces in Polymeric Photocatalysts.
    Wang H; Sun X; Li D; Zhang X; Chen S; Shao W; Tian Y; Xie Y
    J Am Chem Soc; 2017 Feb; 139(6):2468-2473. PubMed ID: 28102077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation.
    Wang H; Yong D; Chen S; Jiang S; Zhang X; Shao W; Zhang Q; Yan W; Pan B; Xie Y
    J Am Chem Soc; 2018 Feb; 140(5):1760-1766. PubMed ID: 29319310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen vacancy mediated exciton dissociation in carbon nitride nanosheets: Enhanced hydroxyl radicals generation for efficient photocatalytic degradation of organic pollutants.
    Zhou Z; Li K; Deng W; Li J; Yan Y; Li Y; Quan X; Wang T
    J Hazard Mater; 2020 Apr; 387():122023. PubMed ID: 31927350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Electron-Hole Interactions in Confined Layered Structures for Molecular Oxygen Activation.
    Wang H; Chen S; Yong D; Zhang X; Li S; Shao W; Sun X; Pan B; Xie Y
    J Am Chem Soc; 2017 Apr; 139(13):4737-4742. PubMed ID: 28282129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitonic Effects in Polymeric Photocatalysts.
    Wang H; Jin S; Zhang X; Xie Y
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22828-22839. PubMed ID: 32609426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis.
    Wang H; Liu W; He X; Zhang P; Zhang X; Xie Y
    J Am Chem Soc; 2020 Aug; 142(33):14007-14022. PubMed ID: 32702981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Exciton Dissociation in Heterojunction Interfaces Realizing Enhanced Photoresponsive Performance.
    Shao W; Wang L; Wang H; Zhao Z; Zhang X; Jiang S; Chen S; Sun X; Zhang Q; Xie Y
    J Phys Chem Lett; 2019 Jun; 10(11):2904-2910. PubMed ID: 31084007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the excitonic processes in polymeric photocatalysts.
    Wang H; Jiang S; Chen S; Zhang X; Shao W; Sun X; Zhao Z; Zhang Q; Luo Y; Xie Y
    Chem Sci; 2017 May; 8(5):4087-4092. PubMed ID: 28580122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics.
    Jailaubekov AE; Willard AP; Tritsch JR; Chan WL; Sai N; Gearba R; Kaake LG; Williams KJ; Leung K; Rossky PJ; Zhu XY
    Nat Mater; 2013 Jan; 12(1):66-73. PubMed ID: 23223125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulate the Strong Exciton Effect by Na
    Xing F; Liu S; Li J; Wang C; Jin S; Jin H; Li J
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):860-868. PubMed ID: 38151338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Exciton Dissociation through the Edge Interfacial State in Metal Halide Perovskite-Based Photocatalysts.
    Xue J; Jiang S; Wang Z; Jiang Z; Cao H; Zhu X; Zhang Q; Luo Y; Bao J
    J Phys Chem Lett; 2023 Feb; 14(6):1504-1511. PubMed ID: 36745060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge separation in semicrystalline polymeric semiconductors by photoexcitation: is the mechanism intrinsic or extrinsic?
    Paquin F; Latini G; Sakowicz M; Karsenti PL; Wang L; Beljonne D; Stingelin N; Silva C
    Phys Rev Lett; 2011 May; 106(19):197401. PubMed ID: 21668198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating Local Charge Distribution of Carbon Nitride for Promoting Exciton Dissociation and Charge-Induced Reactions.
    Chen G; Zhang ZD; Liao YX; Zhang Z; You YZ
    Small; 2021 Aug; 17(32):e2100698. PubMed ID: 34197025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ketones as Molecular Co-catalysts for Boosting Exciton-Based Photocatalytic Molecular Oxygen Activation.
    Wang H; Jiang S; Liu W; Zhang X; Zhang Q; Luo Y; Xie Y
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):11093-11100. PubMed ID: 32219966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitonic Effects in Methylammonium Lead Halide Perovskites.
    Chen X; Lu H; Yang Y; Beard MC
    J Phys Chem Lett; 2018 May; 9(10):2595-2603. PubMed ID: 29714488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interior Exciton Extraction by Spatial-Controlled Iodine Doping in BiOBr Photocatalysts.
    He X; Zhong X; Si W; Zhao Z; Wang H; Zhang X; Xie Y
    Nano Lett; 2024 Jun; 24(22):6545-6552. PubMed ID: 38781416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous Carbon Nitride with π-Electron-Rich Domains and Polarizable Hydroxyls Fabricated via Solution Thermal Shock for Visible-Light Photocatalysis.
    Zhai Z; Zhang H; Niu F; Liu P; Zhang J; Lu H
    ACS Nano; 2022 Dec; 16(12):21002-21012. PubMed ID: 36448781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.