These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28102334)

  • 1. CoFe
    Yang JC; Yin XB
    Sci Rep; 2017 Jan; 7():40955. PubMed ID: 28102334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of magnetic orderly mesoporous α-Fe
    Liu Z; Chen J; Wu Y; Li Y; Zhao J; Na P
    J Hazard Mater; 2018 Feb; 343():304-314. PubMed ID: 28988056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of CoFe
    Nguyen LM; Nguyen NTT; Nguyen TTT; Nguyen DH; Nguyen DTC; Tran TV
    Environ Res; 2022 Dec; 215(Pt 1):114269. PubMed ID: 36103925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures.
    Li Z; Liu X; Jin W; Hu Q; Zhao Y
    J Colloid Interface Sci; 2019 Oct; 554():692-704. PubMed ID: 31352244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation and determination of arsenic species in water by selective exchange and hybrid resins.
    Ben Issa N; Rajaković-Ognjanović VN; Marinković AD; Rajaković LV
    Anal Chim Acta; 2011 Nov; 706(1):191-8. PubMed ID: 21995928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing fluoride ion removal from aqueous solutions and glass manufacturing wastewater using modified orange peel biochar magnetic composite with MIL-53.
    Mahdavi Z; Peighambardoust SJ; Foroughi M; Foroutan R; Ahmadi M; Ramavandi B
    Environ Res; 2024 Aug; ():119825. PubMed ID: 39179142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ one-step synthesis of Fe
    Aslam S; Zeng J; Subhan F; Li M; Lyu F; Li Y; Yan Z
    J Colloid Interface Sci; 2017 Nov; 505():186-195. PubMed ID: 28578281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions.
    Xiong W; Zeng Z; Li X; Zeng G; Xiao R; Yang Z; Zhou Y; Zhang C; Cheng M; Hu L; Zhou C; Qin L; Xu R; Zhang Y
    Chemosphere; 2018 Nov; 210():1061-1069. PubMed ID: 30208531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101.
    Xie Q; Li Y; Lv Z; Zhou H; Yang X; Chen J; Guo H
    Sci Rep; 2017 Jun; 7(1):3316. PubMed ID: 28607404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A(Fe) decorated on cotton fibers.
    Pang D; Wang CC; Wang P; Liu W; Fu H; Zhao C
    Chemosphere; 2020 Sep; 254():126829. PubMed ID: 32348928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the adsorption and removal of Sb(iii) by MIL-53(Fe)/GO using response surface methodology.
    Yang X; Zhang H; Cheng S; Zhou B
    RSC Adv; 2022 Jan; 12(7):4101-4112. PubMed ID: 35425442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid: For removal of pharmaceutical pollutant, doxycycline from aqueous solutions.
    Naeimi S; Faghihian H
    Environ Toxicol Pharmacol; 2017 Jul; 53():121-132. PubMed ID: 28549314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method.
    Tang W; Li Q; Gao S; Shang JK
    J Hazard Mater; 2011 Aug; 192(1):131-8. PubMed ID: 21684075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Arsenic adsorption by magnetic adsorbent CuFe2O4].
    Wu R; Qu J; Wu C
    Huan Jing Ke Xue; 2003 Sep; 24(5):60-4. PubMed ID: 14719262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities.
    Mou F; Guan J; Ma H; Xu L; Shi W
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3987-93. PubMed ID: 22796758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior.
    Purwajanti S; Zhang H; Huang X; Song H; Yang Y; Zhang J; Niu Y; Meka AK; Noonan O; Yu C
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25306-12. PubMed ID: 27600107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent.
    Zhang Y; Yang M; Huang X
    Chemosphere; 2003 Jun; 51(9):945-52. PubMed ID: 12697185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal.
    Feng L; Cao M; Ma X; Zhu Y; Hu C
    J Hazard Mater; 2012 May; 217-218():439-46. PubMed ID: 22494901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the morphology and adsorption capacity of Al-MIL-101 analogues with Fe
    Li S; Lei T; Jiang F; Liu M; Wang Y; Wang S; Yang X
    J Colloid Interface Sci; 2020 Feb; 560():321-329. PubMed ID: 31671353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.