These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28102358)

  • 81. Water/ionic liquid interfaces as fluid scaffolds for the two-dimensional self-assembly of charged nanospheres.
    Nakashima T; Kimizuka N
    Langmuir; 2011 Feb; 27(4):1281-5. PubMed ID: 21218812
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Batch Fabrication of Broadband Metallic Planar Microlenses and Their Arrays Combining Nanosphere Self-Assembly with Conventional Photolithography.
    Wang P; Yu X; Zhu Y; Yu Y; Yuan W
    Nanoscale Res Lett; 2017 Dec; 12(1):388. PubMed ID: 28582969
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Non-lift-off block copolymer lithography of 25 nm magnetic nanodot arrays.
    Baruth A; Rodwogin MD; Shankar A; Erickson MJ; Hillmyer MA; Leighton C
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3472-81. PubMed ID: 21830808
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Large-area hard magnetic L10-FePt nanopatterns by nanoimprint lithography.
    Bublat T; Goll D
    Nanotechnology; 2011 Aug; 22(31):315301. PubMed ID: 21734338
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate.
    Guo Q; Xu M; Yuan Y; Gu R; Yao J
    Langmuir; 2016 May; 32(18):4530-7. PubMed ID: 27101361
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Patterning of periodic nano-cavities on PEDOT-PSS using nanosphere-assisted near-field optical enhancement and laser interference lithography.
    Yuan D; Lasagni A; Hendricks JL; Martin DC; Das S
    Nanotechnology; 2012 Jan; 23(1):015304. PubMed ID: 22155970
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Experimental design applied to spin coating of 2D colloidal crystal masks: a relevant method?
    Colson P; Cloots R; Henrist C
    Langmuir; 2011 Nov; 27(21):12800-6. PubMed ID: 21932793
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fabrication of nanostructures on polyethylene terephthalate substrate by interference lithography and plasma etching.
    Zhu M; Li B; Choi WK
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5474-80. PubMed ID: 23882781
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Nanostructure fabricated by nanosphere lithography assisted with O2 plasma treatment.
    Yan WG; Kong XT; Li ZB; Tian JG
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4311-5. PubMed ID: 23862492
    [TBL] [Abstract][Full Text] [Related]  

  • 90. 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask.
    Ling XY; Acikgoz C; Phang IY; Hempenius MA; Reinhoudt DN; Vancso GJ; Huskens J
    Nanoscale; 2010 Aug; 2(8):1455-60. PubMed ID: 20820734
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy.
    Menumerov E; Golze SD; Hughes RA; Neretina S
    Nanoscale; 2018 Oct; 10(38):18186-18194. PubMed ID: 30246850
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Spin coating mediated morphology modulation in self assembly of peptides.
    Bhandaru N; Kaur G; Panjla A; Verma S
    Nanoscale; 2021 May; 13(19):8884-8892. PubMed ID: 33949416
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Diversification of nanostructure morphology by modifying angle-resolved heterogeneous shadow mask.
    Wang C; Wu X; Dong P; Wang J; Di D; Chen J; Wang H
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8259-65. PubMed ID: 24266222
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Ballistic Penetration of Highly Charged Nanoaerosol Particles through a Lipid Monolayer.
    Morozov VN; Shlyapnikov YM; Kanev IL; Shlyapnikova EA
    Langmuir; 2017 Aug; 33(32):7829-7837. PubMed ID: 28727920
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Size Dependent Mechanical Properties of Monolayer Densely Arranged Polystyrene Nanospheres.
    Huang P; Zhang L; Yan Q; Guo D; Xie G
    Langmuir; 2016 Dec; 32(49):13187-13192. PubMed ID: 27951716
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Solution-Phase Photochemical Nanopatterning Enabled by High-Refractive-Index Beam Pen Arrays.
    Xie Z; Gordiichuk P; Lin QY; Meckes B; Chen PC; Sun L; Du JS; Zhu J; Liu Y; Dravid VP; Mirkin CA
    ACS Nano; 2017 Aug; 11(8):8231-8241. PubMed ID: 28617585
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Structural and magnetic characterizations of high moment synthetic antiferromagnetic nanoparticles fabricated using self-assembled stamps.
    Koh AL; Hu W; Wilson RJ; Earhart CM; Wang SX; Sinclair R
    J Appl Phys; 2010 May; 107(9):9B522. PubMed ID: 20531978
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Chalcogenide glass nanospheres with tunable morphology by liquid-phase template approach.
    He Y; Zhao R; He Y; Chen X; Tao G; Hou C
    iScience; 2023 Mar; 26(3):106111. PubMed ID: 36879817
    [TBL] [Abstract][Full Text] [Related]  

  • 99. An Antireflective Nanostructure Array Fabricated by Nanosilver Colloidal Lithography on a Silicon Substrate.
    Park SJ; Lee SW; Lee KJ; Lee JH; Kim KD; Jeong JH; Choi JH
    Nanoscale Res Lett; 2010 Jul; 5(10):1570-7. PubMed ID: 21076677
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Self-Assembly Magnetic Micro- and Nanospheres and the Effect of Applied Magnetic Fields.
    Mourkas A; Zarlaha A; Kourkoumelis N; Panagiotopoulos I
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33920676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.